

    
      
          
            
  
Welcome to genomeNLP’s documentation!

[image: _images/zenodo.8135590.svg]
 [https://doi.org/10.5281/zenodo.8135590][image: _images/license.svg]
 [https://anaconda.org/tyronechen/genomenlp][image: _images/version.svg]
 [https://anaconda.org/tyronechen/genomenlp][image: _images/downloads.svg]
 [https://anaconda.org/tyronechen/genomenlp]Copyright (c) 2022 Tyrone Chen [image: ORCID logo], Navya Tyagi [image: ORCID logo], Sarthak Chauhan, Anton Y. Peleg [image: ORCID logo], and Sonika Tyagi [image: ORCID logo].Code in this repository is provided under a MIT license [https://opensource.org/licenses/MIT]. This documentation is provided under a CC-BY-3.0 AU license [https://creativecommons.org/licenses/by/3.0/au/].

Visit our lab website here. [https://bioinformaticslab.erc.monash.edu/] Contact Sonika Tyagi at sonika.tyagi@monash.edu.


Note

The main repository is on github [https://github.com/tyronechen/genomenlp] but also mirrored on gitlab. Please submit any issues to the main github repository only.




Contents:


	genomeNLP: Genome recoding for Machine Learning Usage incorporating genomicBERT
	Highlights

	Cite us with:

	Install
	Mamba (automated)

	Mamba (manual)





	Usage
	0. Available commands

	1. Preprocessing

	2. Classification

	3. Comparing deep learning models trained by genomicBERT

	4. Case study





	Background

	Acknowledgements





	genomeNLP: Case study of deep learning
	Outline
	Learning objectives

	Potential/preferred prerequisite knowledge

	Glossary





	1. Introduction
	What is NLP and genomics

	Why apply NLP in genomics

	Distinction between conventional NLP and genome NLP





	2. Connect to a remote server

	3. Installing conda, mamba and genomenlp

	Case studies per molecule type
	DNA case study

	RNA case study

	Protein case study





	Citation





	genomeNLP: Case study of DNA
	4. Setting up a biological dataset

	5. Format a dataset for input into genomeNLP

	6. Preparing a hyperparameter sweep

	7. Selecting optimal hyperparameters for training

	8. With the selected hyperparameters, train the full dataset

	9. Perform cross-validation

	10. Compare different models

	11. Obtain model interpretability scores

	Citation





	genomeNLP: Case study of Protein
	4. Setting up a biological dataset

	5. Format a dataset for input into genomeNLP

	6. Preparing a hyperparameter sweep

	7. Selecting optimal hyperparameters for training

	8. With the selected hyperparameters, train the full dataset

	9. Perform cross-validation

	10. Compare different models

	11. Obtain model interpretability scores

	Citation





	Create a token set from sequences
	Source data

	Results
	Empirical tokenisation

	Conventional k-mers





	Notes

	Usage
	Empirical tokenisation

	Conventional k-mers









	Create a dataset object from sequences
	Source data

	Results

	Notes

	Usage





	Create embeddings from a tokenised dataset
	Source data

	Results
	Empirical tokenisation

	Conventional k-mers





	Notes

	Usage
	Empirical tokenisation

	Conventional k-mers









	Perform a hyperparameter sweep
	Source data

	Results
	Deep learning

	Frequency-based approaches

	Embedding





	Notes

	Usage
	genomicBERT: Deep learning

	Frequency based approach

	Embedding based approach









	genomicBERT: Train a deep learning classifier
	Source data

	Results

	Notes

	Usage





	Perform cross-validation
	Source data

	Results
	Deep learning

	Frequency-based approaches

	Embedding





	Notes

	Usage
	Deep learning









	Compare performance of different deep learning models
	Source data

	Results

	Notes

	Usage





	Generate synthetic sequences for use in classification
	Source data

	Results

	Notes

	Usage





	Get class attribution for deep learning models
	Source data

	Results
	Deep learning





	Notes

	Usage
	genomicBERT: Deep learning















Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
genomeNLP: Genome recoding for Machine Learning Usage incorporating genomicBERT

[image: _images/zenodo.8135590.svg]
 [https://doi.org/10.5281/zenodo.8135590][image: _images/license.svg]
 [https://anaconda.org/tyronechen/genomenlp][image: _images/version.svg]
 [https://anaconda.org/tyronechen/genomenlp][image: _images/downloads.svg]
 [https://anaconda.org/tyronechen/genomenlp]Copyright (c) 2022 Tyrone Chen [image: ORCID logo], Navya Tyagi [image: ORCID logo], Sarthak Chauhan, Anton Y. Peleg [image: ORCID logo], and Sonika Tyagi [image: ORCID logo].Code in this repository is provided under a MIT license [https://opensource.org/licenses/MIT]. This documentation is provided under a CC-BY-3.0 AU license [https://creativecommons.org/licenses/by/3.0/au/].

Visit our lab website here. [https://bioinformaticslab.erc.monash.edu/] Contact Sonika Tyagi at sonika.tyagi@monash.edu.


Note

The main repository is on github [https://github.com/tyronechen/genomenlp] but also mirrored on gitlab. Please submit any issues to the main github repository only.




Highlights


	We provide a comprehensive classification of genomic data tokenisation and representation approaches for ML applications along with their pros and cons.


	Using our genomicBERT deep learning pipeline, we infer k-mers directly from the data and handle out-of-vocabulary words. At the same time, we achieve a significantly reduced vocabulary size compared to the conventional k-mer approach reducing the computational complexity drastically.


	Our method is agnostic to species or biomolecule type as it is data-driven.


	We enable comparison of trained model performance without requiring original input data, metadata or hyperparameter settings.


	We present the first publicly available, high-level toolkit that infers the grammar of genomic data directly through artificial neural networks.


	Preprocessing, hyperparameter sweeps, cross validations, metrics and interactive visualisations are automated but can be adjusted by the user as needed.




[image: graphical abstract describing the repository]


Cite us with:

[image: _images/zenodo.8135590.svg]
 [https://doi.org/10.5281/zenodo.8135590]Manuscript:

@article{chen2023genomicbert,
  title={genomicBERT and data-free deep-learning model evaluation},
  author={Chen, Tyrone and Tyagi, Navya and Chauhan, Sarthak and Peleg, Anton Y and Tyagi, Sonika},
  journal={bioRxiv},
  month={jun},
  pages={2023--05},
  year={2023},
  publisher={Cold Spring Harbor Laboratory},
  doi={10.1101/2023.05.31.542682},
  url={https://doi.org/10.1101/2023.05.31.542682}





}

Software:

@software{chen_tyrone_2023_8143218,
author       = {Chen, Tyrone and
                Tyagi, Navya and
                Chauhan, Sarthak and
                Peleg, Anton Y. and
                Tyagi, Sonika},
title        = {{genomicBERT and data-free deep-learning model
                 evaluation}},
month        = jul,
year         = 2023,
note         = {If you use this software, please cite it as below.},
publisher    = {Zenodo},
version      = {latest},
doi          = {10.5281/zenodo.8135590},
url          = {https://doi.org/10.5281/zenodo.8135590}
}







Install


Mamba (automated)

This is the recommended install method as it automatically handles dependencies. Note that this has only been tested on a linux operating system.


Note

Installing with mamba is highly recommended. Installing with pip will not work. Installing with conda will be slow. You can find instructions for setting up mamba here [https://mamba.readthedocs.io/en/latest/installation.html]. Please submit any issues to the main github repository only.



First try this:

mamba install -c conda-forge -c tyronechen genomenlp





If there are any errors with the previous step (especially if you are on a cluster with GPU access), try this first and then repeat the previous step:

mamba install -c anaconda cudatoolkit





If neither works, please submit an issue with the full stack trace and any supporting information.



Mamba (manual)

Clone the git repository. This will also allow you to manually run the python scripts.

Then manually install the following dependencies with mamba. Installing with pip will not work as some distributions are not available on pip.:

gensim==4.2.0
hyperopt==0.2.7
matplotlib==3.5.2
pandas==1.4.2
pytorch==1.10.0
ray==1.13.0
scikit-learn==1.1.1
screed==1.0.5
seaborn==0.11.2
sentencepiece==0.1.96
tokenizers==0.12.1
tqdm==4.64.0
transformers==4.30.0
wandb==0.13.4
weightwatcher==0.5.9
xgboost==1.7.1
yellowbrick==1.3.post1





You should then be able to run the scripts manually from src/genomenlp. As with the automated step, cudatoolkit may be required.




Usage


0. Available commands

If installed correctly using the automated mamba method, each of these commands will be available directly on the command line:

create_dataset_bio
create_dataset_nlp
create_embedding_bio_sp
create_embedding_bio_kmers
cross_validate
embedding_pipeline
fit_powerlaw
freq_pipeline
generate_synthetic
interpret
kmerise_bio
parse_sp_tokens
summarise_metrics
sweep
tokenise_bio
train





If installed correctly using the manual mamba method, each of the above commands can be called from their corresponding python script, for example:

python create_dataset_bio.py







1. Preprocessing

Tokenise the biological sequence data into segments using either empirical tokenisation or conventional k-mers. Provide input data as gzipped fasta files. Empirical tokenisation is a two-step process, while in k-merisation the tokenisation and dataset creation is performed in the same operation. Both methods generate data compatible with the genomicBERT pipeline.

Empirical tokenisation pathway:

tokenise_bio -i [INFILE_PATH ... ] -t TOKENISER_PATH
create_dataset_bio <INFILE_SEQS_1> <INFILE_SEQS_2> <TOKENISER_PATH> -c CHUNK -o OUTFILE_DIR





Conventional k-mers pathway:

# LABEL must match INFILE_PATH! assume that one fasta file has one seq class
kmerise_bio -i [INFILE_PATH ... ] -t TOKENISER_PATH -k KMER_SIZE -l [LABEL ... ] -c CHUNK -o OUTFILE_DIR
create_dataset_bio <INFILE_SEQS_1> <INFILE_SEQS_2> <TOKENISER_PATH> -c CHUNK -o OUTFILE_DIR





Embedding pathway (input files here are csv created from previous step):

# after the empirical tokenisation pathway::
create_embedding_bio_sp -i [INFILE_PATH ... ] -t TOKENISER_PATH -o OUTFILE_DIR

# after the conventional k-mers pathway::
create_embedding_bio_kmers -i [INFILE_PATH ... ] -t TOKENISER_PATH  -o OUTFILE_DIR






Note

The CHUNK flag can be used to partition individual sequences into smaller chunks. 512 is a good starting point. The --no_reverse_complement flag should be used where non-DNA sequences are used. Vocabulary size can be set with the --vocab_size flag. For generating embeddings, number of threads can be set with --njobs.





2. Classification

Feed the data preprocessed in the previous step into the classification pipeline. Set freq_method and model combination as needed. Hyperparameter sweeping is performed by default. For non-deep learning methods, cross-validation is performed in the same operation.

Deep learning with the genomicBERT pipeline requires a wandb account set up and configured to visualise interactive plots in real time. Please follow the instructions on wandb to configure your own account. [https://wandb.ai/home]

Frequency-based approaches:

freq_pipeline -i [INFILE_PATH ... ] --format "csv" -t TOKENISER_PATH --freq_method [ cvec | tfidf ] --model [ rf | xg ] --kfolds N --sweep_count N --metric_opt [ accuracy | f1 | precision | recall | roc_auc ] --output_dir OUTPUT_DIR





Embedding:

embedding_pipeline -i [INFILE_PATH ... ] --format "csv" -t TOKENISER_PATH --freq_method [ cvec | tfidf ] --model [ rf | xg ] --kfolds N --sweep_count N --metric_opt [ accuracy | f1 | precision | recall | roc_auc ] --output_dir OUTPUT_DIR






Note

--model_features can be set to reduce the number of features used. Number of threads can be set with --njobs. --sweep_method can be set to change search method between [ grid | random ].



genomicBERT deep learning pipeline:

sweep <TRAIN_DATA> <FORMAT> <TOKENISER_PATH> --test TEST_DATA --valid VALIDATION_DATA --hyperparameter_sweep PARAMS.JSON --entity_name WANDB_ENTITY_NAME --project_name WANDB_PROJECT_NAME --group_name WANDB_GROUP_NAME --sweep_count N --metric_opt [ eval/accuracy | eval/validation | eval/loss | eval/precision | eval/recall ] --output_dir OUTPUT_DIR

# use the WANDB_ENTITY_NAME, WANDB_PROJECT_NAME and the best run id corresponding to the sweep
# WANDB_GROUP_NAME should be changed to reflect the new category of runs (eg "cval")
cross_validate <TRAIN_DATA> <FORMAT> --test TEST_DATA --valid VALIDATION_DATA --entity_name WANDB_ENTITY_NAME --project_name WANDB_PROJECT_NAME --group_name WANDB_GROUP_NAME --kfolds N --config_from_run WANDB_RUN_ID --output_dir OUTPUT_DIR






Note

You can provide the hyperparameter search space with a json file to --hyperparameter_sweep. The label_names argument here is different from previous steps and refers to the column name containing labels, not a list of class labels. Set --device cuda:0 if you have cuda installed and want to use GPU.




Example hyperparameter.json file{
  "name" : "random",
  "method" : "random",
  "metric": {
    "name": "eval/f1",
    "goal": "maximize"
  },
  "parameters" : {
    "epochs" : {
      "values" : [1, 2, 3]
    },
    "batch_size": {
        "values": [8, 16, 32, 64]
        },
    "learning_rate" :{
      "distribution": "log_uniform_values",
      "min": 0.0001,
      "max": 0.1
      },
    "weight_decay": {
        "values": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
      }
  },
  "early_terminate": {
      "type": "hyperband",
      "s": 2,
      "eta": 3,
      "max_iter": 27
  }
}







3. Comparing deep learning models trained by genomicBERT

The included method only works on deep learning models, including those trained through the genomicBERT pipeline. For more information on the method, including interpretation, please refer to the publication (https://arxiv.org/pdf/2202.02842.pdf).

fit_powerlaw -i [ INFILE_PATH ... ] -t OUTPUT_DIR -a N







4. Case study

A detailed case study is available for reference.




Background

To be written



Acknowledgements

TC was supported by an Australian Government Research Training Program (RTP) Scholarship and Monash Faculty of Science Dean’s Postgraduate Research Scholarship. ST acknowledges support from Early Mid-Career Fellowship by Australian Academy of Science and Australian Women Research Success Grant at Monash University. AP and ST acnowledge MRFF funding for the SuperbugAI flagship. This work was supported by the MASSIVE HPC facility (https://www.massive.org.au) and the authors thank the Monash Bioinformatics Platform as well as the HPC team at Monash eResearch Centre for their continuous personnel support. We thank Yashpal Ramakrishnaiah for helpful suggestions on package management, code architecture and documentation hosting. We thank Jane Hawkey for advice on recovering deprecated bacterial protein identifier mappings in NCBI. We thank Andrew Perry and Richard Lupat for helping resolve an issue with the python package building process. Biorender was used to create many figures in this publication. We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our 4 Australian campuses stand (https://www.monash.edu/indigenous-australians/about-us/recognising-traditional-owners).





            

          

      

      

    

  

    
      
          
            
  
genomeNLP: Case study of deep learning

Copyright (c) 2023 Tyrone Chen [image: ORCID logo], Navya Tyagi [image: ORCID logo], and Sonika Tyagi [image: ORCID logo].Code in this repository is provided under a MIT license [https://opensource.org/licenses/MIT].
Documentation for this specific case study is provided with © all rights reserved (temporary until publication).
All other documentation not on this page is provided under a CC-BY-3.0 AU license [https://creativecommons.org/licenses/by/3.0/au/].


Outline

The primary focus of this tutorial is application of NLP in a genomic
context by introducing our package genomenlp.
In this tutorial, we cover a wide range of topics from introduction
to field of GenomeNLP to practical application skills of our conda
package, divided into various sections:


	Introduction to GenomeNLP


	Connection to a remote server


	Installing conda and genomenlp package


	Setting up a Biological Dataset


	Format a dataset as input for genomenlp


	Preparing a hyperparameter sweep


	Selecting optimal parameters


	With the selected hyperparameters, train the full dataset


	Performing cross-validation


	Comparing performance of different models


	Obtain model interpretability scores




For detailed usage of individual functions, please refer to the latest documentation.


Learning objectives


	Describe the unique challenges in biological NLP compared to conventional NLP


	Understand common representations of biological data


	Understand common biological data preprocessing steps


	Investigate biological sequence data for use in machine learning


	Perform a hyperparameter sweep, training and cross-validation


	Identify what the model is focusing on


	Compare trained model performances to each other





Note

This is **not** an introductory machine learning workshop.
Readers of this tutorial are assumed to be familiar with
the use of the command line and of the basics of machine learning.





Potential/preferred prerequisite knowledge


	[required] CLI (e.g. bash shell) usage


	[optional] Connecting and working on a remote server (e.g. ssh)


	[optional] Basic knowledge of machine learning


	[optional] Machine learning dashboards (e.g. tensorboard, wandb)


	[optional] Package/environment managers (e.g. conda, mamba)




Length: Half-day, 4.0 - 4.5 hours
Intended audience: machine learning practitioners OR computational biologists



Glossary


	BERT - Bidirectional Encoder Representations from Transformers, a family of deep learning architectures used for NLP.


	DL - Deep Learning


	k-mers - Identical to tokens


	k-merisation - A process where a biological sequence is segmented into substrings. Commonly performed as a sliding window.


	ML - Machine Learning


	NLP - Natural Language Processing


	OOV - Out-of-vocabulary words


	Sliding window - ABCDEF: [ABC, BCD, CDE, DEF] instead of [ABC, DEF]


	Tokenisation - A process where a string is segmented into substrings


	Tokens - Subunits of a string used as input into conventional NLP algorithms







1. Introduction


What is NLP and genomics

Natural Language Processing (NLP) is a branch of computer science
focused around the understanding of and the processing of human language.
Such a task is non-trivial, due to the high variation in meaning
of words found embedded in different contexts. Nevertheless, NLP is applied
with varying degrees of success
in various fields, including speech recognition, machine translation and
information extraction. A recent well-known example is ChatGPT.

[image: _images/applications_example.png]
Meanwhile, genomics involves the study of the genome, which contains
the entire genetic content of an organism. As the primary blueprint,
it is an important source of information and underpins all biological
experiments, directly or indirectly.



Why apply NLP in genomics

Although NLP has been shown to effectively preprocess and extract “meaning” from
human language, until recently, its application in biology was mostly
centred around biological literature and electronic health record mining.
However, we note the striking similarities between genomic sequence data
and human languages that make it well-suited to NLP.
(A) DNA can be directly expressed as human language, being composed of text
strings such as A, C, T, G, and having its own semantics as well as grammar.
(B) Large quantities
of biological data are available in the public domain, with a growth rate
exponentially exceeding astronomy and social media platforms combined.
(C) Recent advances in machine learning which improve the scalability of
deep learning (DL) make computational analysis of genomic data feasible.


Note

The same is true for protein sequences, and nucleic acid data such as
transcripts. While our pipeline can process any of these, the scope of
this tutorial is for genomic data only.



[image: _images/data_growth.png]
We therefore make a distinction between the field of conventional
literature or electronic health record mining and the application of NLP
concepts and methods to the genome. We call this field genome NLP.
The aim of genome NLP would be to extract relevant information from
the large corpora of biological data generated by experiments, such as
gene names, point mutations, protein interactions and biological pathways.
Applying concepts used in NLP can potentially enhance the analysis and
interpretation of genomic data, with implications for research in
personalised medicine, drug discovery and disease diagnosis.



Distinction between conventional NLP and genome NLP

Several key differences need to be accounted for for implementing NLP on the genome.
(A) The first challenge is the tokenisation of long biological sequences
into smaller subunits. While some natural languages have subunits
separated by spaces, enabling easy segmentation, this is not
true in biological sequence data, and also to an extent in many
languages such as Arabic, Mandarin or Sanskrit characters. (B) A second
challenge is the diversity and high degree in nuance of biological
experiments. As a result, interpretability and interoperability of
biological data is highly restricted in scope, even within a single
experiment. (C) The third challenge is the difficulty in comparing
models, partly due to the second challenge, and partly due to the lack
of accessible data in the biomedical field for privacy reasons,
and partly because of the limited enforcement of biological data integrity
as well as metadata by journals [https://academic.oup.com/view-large/figure/129641572/gky1064fig3.jpg]. In addition, the large volume of biological
data in a single experiment makes re-training time consuming.

[image: _images/bio_vs_nlp.png]
To address the challenges in genome-NLP, we used a new semi-automated workflow.
This workflow integrates feature engineering and machine
learning techniques and is designed to be adaptable across different
species and biological sequences, including nucleic acids and proteins.
The workflow includes the introduction of a (1) new tokeniser for
biological sequence data which effectively tokenises contiguous genomic
sequences while retaining biological context. This minimises
manual preprocessing, reduces vocabulary sizes, and (2) handles unknown
biological terms, conceptually identical to the out-of-vocabulary (OOV)
problem in natural languages. (3) Passing the preprocessed data to a
genomicBERT algorithm allows for direct biological sequence input
to a state-of-the-art deep learning algorithm. (4) We also enable model
comparison by weights, removing the need for computationally expensive
re-training or access to raw data. To promote collaboration and adoption,
genomicBERT is available as part of the publicly accessible conda
package called genomeNLP. Successful case studies [https://doi.org/10.5281/zenodo.8135590] have demonstrated
the effectiveness of genomeNLP in genome NLP applications.

[image: _images/graphical_abstract.png]



2. Connect to a remote server

To standardise the compute environment for all participants, we will be
establishing a network connection with a remote server. Data and a working
install of genomenlp is provided. Secure Shell (SSH) is a common method
for remote server connection, providing secure access and remote command
execution through encrypted connections between the client and server.

To use ssh (Secure Shell) for remote server access, please follow these steps:


	Open a Terminal or Command Prompt on your local machine. SSH is
typically available on Unix-like systems (e.g. Linux, macOS) and
can also be installed on Windows systems using tools like
PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html]
or MobaXterm [https://mobaxterm.mobatek.net/download.html].


	Determine the ssh command syntax. Generally the format is:
ssh username@hostname or the IP address of the remote server.


	Enter your password or passphrase when prompted. Once authenticated,
you should be connected to the remote server via SSH.





Note

Details for (2) and (3) will be provided on the day of the workshop.





3. Installing conda, mamba and genomenlp


Note

This step is already performed for you. Information is provided as
a guide for those who are reading this document outside of the
tutorial, or if for some reason the installation is not working.



A package/environment manager is a software tool that automates the
installation, update, and removal of packages and allows for the
creation of isolated environments with specific configurations. This
simplifies software setup, reduces compatibility issues, and improves
software development workflows. Popular examples include apt and
anaconda. We will use conda and mamba in this case study.


Note

The same is true for protein sequences, and nucleic acid data such as
transcripts. While our pipeline can process any of these, the scope of
this tutorial is for genomic data only.



To install conda using the command line, you can follow these steps:


	Open your command prompt. Use the curl or wget command to
download the installer directly from the command line using its URL.




$ wget 'https://repo.anaconda.com/miniconda/Miniconda3-py39_23.3.1-0-Linux-x86_64.sh'






	Run the installer script using the following command:




$ bash Miniconda3-py39_23.3.1-0-Linux-x86_64.sh






	Follow the on-screen prompts to proceed with the installation. (In the prompt asking
for the location for conda installation, please specify the directory as foo/bar)


	Reload your shell as shown below OR exit and return to complete the install.




$ source ~/.bashrc
$ source ~/.bash_profile






	To install mamba, which is a faster alternative to Conda for package management,
run the following command:




$ conda install mamba -n base -c conda-forge






Note

`pip` does not work due to a missing pytorch dependency.
`conda` was found to be very slow due to the large dependency tree.




	As with Step 4, reload your shell as below OR exit and return to complete the install.




$ source ~/.bashrc
$ source ~/.bash_profile






	To install and activate genomenlp, run the following commands:




$ mamba create -n genomenlp -c tyronechen -c conda-forge genomenlp -y
$ mamba activate genomenlp
# after the above completes
$ sweep -h
# you should see some output







Case studies per molecule type

Please select the case study relevant to your use case:


DNA case study

genomeNLP: Case study of DNA



RNA case study

coming soon



Protein case study

genomeNLP: Case study of Protein




Citation

Cite our manuscript here:

@article{chen2023genomicbert,
    title={genomicBERT and data-free deep-learning model evaluation},
    author={Chen, Tyrone and Tyagi, Navya and Chauhan, Sarthak and Peleg, Anton Y and Tyagi, Sonika},
    journal={bioRxiv},
    month={jun},
    pages={2023--05},
    year={2023},
    publisher={Cold Spring Harbor Laboratory},
    doi={10.1101/2023.05.31.542682},
    url={https://doi.org/10.1101/2023.05.31.542682}
}





Cite our software here:

@software{tyrone_chen_2023_8135591,
  author       = {Tyrone Chen and
                  Navya Tyagi and
                  Sarthak Chauhan and
                  Anton Y. Peleg and
                  Sonika Tyagi},
  title        = {{genomicBERT and data-free deep-learning model
                  evaluation}},
  month        = jul,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {latest},
  doi          = {10.5281/zenodo.8135590},
  url          = {https://doi.org/10.5281/zenodo.8135590}
}









            

          

      

      

    

  

    
      
          
            
  
genomeNLP: Case study of DNA

[image: _images/badge_logo.svg]
 [https://binderhub.rc.nectar.org.au/v2/gh/tyronechen/genomenlp.git/HEAD?labpath=src%2Fjupyter%2Fcase_study_dna.ipynb]
4. Setting up a biological dataset

Understanding of the data and experimental design is a necessary first step to
analysis. In our case study, we perform a simple two case classification, where
the dataset consists of a corpora of biological sequence data belonging to two
categories. Genomic sequence associated with promoters and non-promoter regions
are available. In the context of biology, promoters are important modulators of
gene expression, and most are relatively short as well as information rich.
Motif prediction is an active, on-going area of research in biology, since many
of these signals are weak and difficult to detect, as well as varying in
frequency and distribution across different species. Therefore, our aim is to
classify sequences into promoter and non-promoter sequence categories.


Note

A more detailed description of the data is available here. [https://github.com/khanhlee/bert-promoter]



Our data is available in the form of fasta files. fasta files are a common
format for storing biological sequence data. They typically contain headers that
provide information about the sequence, followed by  the sequence itself. They can
also store other nucleic acid data, as well as protein. The fasta format contains
headers with a leading >. Lines without > contain biological sequence data
and can be newline separated. In our simple example, the full set of characters are
the DNA nucleotides adenine A, thymine T, cytosine C and guanine G.
These are the building blocks of the genetic code.

The files can be downloaded here for non promoter sequences [https://raw.githubusercontent.com/khanhlee/bert-promoter/main/data/non_promoter.fasta] and promoter sequences [https://raw.githubusercontent.com/khanhlee/bert-promoter/main/data/promoter.fasta].

# create the directory structure
cd ~
mkdir -p data src results
cd data
curl -L -O "https://raw.githubusercontent.com/khanhlee/bert-promoter/main/data/non_promoter.fasta"
curl -L -O "https://raw.githubusercontent.com/khanhlee/bert-promoter/main/data/promoter.fasta"
gzip non_promoter.fasta
gzip promoter.fasta





HEADER:   >PCK12019 FORWARD 639002 STRONG
SEQUENCE: TAGATGTCCTTGATTAACACCAAAAT
HEADER:   >ECK12066 REVERSE 3204175 STRONG
SEQUENCE: AAAGAAAATAATTAATTTTACAGCTG






Note

In real world  data, other characters are available which refer to multiple possible
nucleotides, for example ``W`` indicates either an ``A`` or a ``T``. RNA includes
the character ``U``, and proteins include additional letters of the alphabet.



Tokenisation in genomics involves segmenting biological sequences into smaller
units, called tokens (or k-mers in biology) for further processing.
In the context of genomics, tokens can represent individual nucleotides,
k-mers, codons, or other biologically meaningful segments. Just as in conventional NLP,
tokenisation is required to facilitate most downstream operations.

Here, we provide gzipped fasta file(s) as input. While conventional biological
tokenisation splits a sequence into arbitrary-length segments, empirical
tokenisation derives the resulting tokens directly from the corpus,
with vocabulary size as the only user-defined parameter.
Data is then split into training, testing and/or validation partitions
as desired by the user and automatically reformatted for input into the
deep learning pipeline.


Note

We provide the conventional k-merisation method as well as an option for users.
In our pipeline specifically, the empirical tokenisation and data object
creation is split into two steps, while k-merisation combines both in one
operation. This is due to the empirical tokenisation process having to
“learn” tokens from the data.



# Empirical tokenisation pathway
cd ~/src
tokenise_bio \
  -i ../data/promoter.fasta.gz \
     ../data/non_promoter.fasta.gz \
  -t ../data/tokens.json
# -i INFILE_PATHS path to files with biological seqs split by line
# -t TOKENISER_PATH path to tokeniser.json file to save or load data





This generates a json file with tokens and their respective weights or IDs.
You should see some output like this.

[00:00:00] Pre-processing sequences
[00:00:00] Suffix array seeds
[00:00:14] EM training
Sample input sequence: AACCGGTT
Sample tokenised: [156, 2304]
Token: : k-mer map: 156  : : AA
Token: : k-mer map: 2304 : : CCGGTT







5. Format a dataset for input into genomeNLP

In this section, we reformat the data to meet the requirements
of our pipeline which takes specifically structured inputs. This
intermediate data structure serves as the foundation for downstream
analyses and facilitates seamless integration with the pipeline.
Our pipeline contains a method that performs this automatically, generating a
reformatted dataset with the desired structure.


Note

The data format is identical to that used by the HuggingFace
``datasets`` and ``transformers`` libraries.



# Empirical tokenisation pathway
create_dataset_bio \
  ../data/promoter.fasta.gz \
  ../data/non_promoter.fasta.gz \
  ../data/tokens.json \
  -o ../data/
# -o OUTFILE_DIR write dataset to directory as
#   [ csv \| json \| parquet \| dir/ ] (DEFAULT:"hf_out/")
# default datasets split: train 90%, test 5% and validation set 5%





The output is a reformatted dataset containing the same information.
Properties required for a typical machine learning pipeline are added,
including labels, customisable data splits and token identifiers.

DATASET AFTER SPLIT:
DatasetDict ({
  train: Dataset ({
  features: ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask’],
  num_rows: 12175 })
  test: Dataset ({
  features: ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask’],
  num_rows: 677 })
  valid: Dataset ({
  features: ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask’],
  num_rows: 676 })
})






Note

The column ``token_type_ids`` is not actually needed in this
specific case study, but it is safely ignored in such cases.



SAMPLE TOKEN MAPPING FOR FIRST 5 TOKENS IN SEQ:
TOKEN ID: 858  | TOKEN: TCA
TOKEN ID: 2579 | TOKEN: GCATCAC
TOKEN ID: 111  | TOKEN: TATT
TOKEN ID: 99   | TOKEN: CAGG
TOKEN ID: 777  | TOKEN: AGGCT







6. Preparing a hyperparameter sweep

In machine learning, achieving optimal model performance often requires
finding the right combination of hyperparameters (assuming the input
data is viable). Hyperparameters vary depending on the specific
algorithm and framework being used, but commonly include learning rate,
dropout rate, batch size, number of layers and optimiser choice.
These parameters heavily influence the learning process and subsequent
performance of the model.

For this reason, hyperparameter sweeps are normally carried out to
systematically test combinations of hyperparameters, with the end goal of
identifying the configuration that produces the best model performance.
Usually, sweeps are carried out on a small partition of the data only
to maximise efficiency of compute resources, but it is not uncommon to
perform sweeps on entire datasets. Various strategies,
such as grid search, random search, or bayesian optimisation, can be
employed during a hyperparameter sweep to sample parameter values.
Additional strategies such as early stopping can also be used.

To streamline the hyperparameter optimization process, we use the
wandb (Weights & Biases) platform which has a user-friendly interface
and powerful tools for tracking experiments and visualising results.

First, sign up for a wandb account at: https://wandb.ai/site and login
by pasting your API key.

wandb login
wandb: Paste an API key from your profile, and hit enter and hit enter or press ctrl+c to quit:





Now, we use the sweep tool to perform hyperparameter sweep. Search
strategy, parameters and search space are passed in as a json file.
An example is below. If no sweep configuration is provided, default configuration will apply.


Default hyperparameter sweep settings if none are provided. You can copy this file and edit it for your own use if needed.{
    "name": "random",
    "method": "random",
    "metric": {
        "name": "eval/f1",
        "goal": "maximize"
        },
    "parameters": {
        "epochs": {
            "values": [1, 2, 3, 4, 5]
            },
        "dropout": {
          "values": [0.15, 0.2, 0.25, 0.3, 0.4]
        },
        "batch_size": {
            "values": [8, 16, 32, 64]
            },
        "learning_rate": {
            "distribution": "log_uniform_values",
            "min": 1e-5,
            "max": 1e-1
        },
        "weight_decay": {
            "values": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
        },
        "decay": {
            "values": [1e-5, 1e-6, 1e-7]
        },
        "momentum": {
            "values": [0.8, 0.9, 0.95]
        }
    },
    "early_terminate": {
        "type": "hyperband",
        "s": 2,
        "eta": 3,
        "max_iter": 27
    }
}





sweep \
  ../data/train.parquet \
  parquet \
  ../data/tokens.json \
  -t ../data/test.parquet \
  -v ../data/valid.parquet \
  -w ../data/hyperparams.json \   # optional
  -e entity_name \       # <- edit as needed
  -p project_name \      # <- edit as needed
  -l labels \
  -n 3
# -t TEST, path to [ csv \| csv.gz \| json \| parquet ] file
# -v VALID, path to [ csv \| csv.gz \| json \| parquet ] file
# -w HYPERPARAMETER_SWEEP, run a hyperparameter sweep with config from file
# -e ENTITY_NAME, wandb team name (if available).
# -p PROJECT_NAME, wandb project name (if available)
# -l LABEL_NAMES, provide column with label names (DEFAULT: "").
# -n SWEEP_COUNT, run n hyperparameter sweeps





*****Running training*****
Num examples = 12175
Num epochs= 1
Instantaneous batch size per device = 64
Total train batch size per device = 64
Gradient Accumulation steps= 1
Total optimization steps= 191





The output is written to the specified directory, in this case
sweep_out and will contain the output of a standard pytorch
saved model, including some wandb specific output.

The sweeps gets synced to the wandb dashboard along with various
interactive custom charts and tables which we provide as part of our
pipeline. A small subset of plots are provided for reference.
Interactive versions of these and more plots are available on wandb.

[image: _images/sweep_conf_mat.png]
[image: _images/sweep_pr.png]
[image: _images/sweep_roc.png]
[image: _images/sweep_f1.png]
[image: _images/sweep_loss.png]
[image: _images/sweep_lr.png]
Here is an example of a full wandb generated report: [https://api.wandb.ai/links/tyagilab/a56uxmff]

You may inspect your own generated reports after they complete.



7. Selecting optimal hyperparameters for training

Having completed a sweep, we next identified the best set
of parameters for model training. We do this by examining training metrics.
These serve as quantitative measures of a model’s performance during
training. These metrics provide insights into the model’s accuracy and
generalisation capabilities. We explore commonly used training metrics,
including accuracy, loss, precision, recall, and f1 score to inform us
of a model’s performance

A key event we want to avoid is overfitting. Overfitting occurs when a
learning model performs exceptionally well on the training data but
fails to generalise to unseen data, making it unfit for use outside of the
specific scope of the experiment. This can be detected by observing performance
metrics, if the accuracy decreases and later increases an overfit
event has occurred. In real world applications, this can
lead to adverse events that directly impact us, considering that such
models are used in applications such as drug prediction or self-driving cars.
Here, we use the f1 score calculated on the testing set as the main
metric of interest. We showed that we obtain a best f1 score of 0.79.

Best run revived-sweep-6 with eval/f1=0.7900291349379833
BEST MODEL AND CONFIG FILES SAVED TO: *./sweep_out/model_files*
HYPERPARAMETER SWEEP END





Here is an example of a full wandb generated report for the “best” run. [https://wandb.ai//tyagilab/sweep/reports/Best-run-revived-sweep-6--Vmlldzo0OTExOTc1]

You may inspect your own generated reports after they complete.



8. With the selected hyperparameters, train the full dataset

In a conventional workflow, the sweep is performed on a small
subset of training data. The resulting parameters are then
recorded and used in the actual training step on the full dataset.
Here, we perform the sweep on the entire dataset, and hence
remove the need for further training. If you perform this on your
own data and want to use a small subset, you can do so and then
pass the recorded hyperparameters with the same input data to
the train function of the pipeline. We include an example of
this below for completeness, but you can skip this for our
specific case study. Note that the input is almost identical to
sweep.

train \
  ../data/train.parquet \
  parquet \
  ../data/tokens.json \
  -t ../data/test.parquet \
  -v ../data/valid.parquet \
  --output_dir ../results/train_out \
  -f ../data/hyperparams.json \  # <- you can pass in hyperparameters
  -c entity_name/project_name/run_id \  # <- wandb overrides hyperparameters
  -e entity_name \   # <- edit as needed
  -p project_name    # <- edit as needed
# -t TEST, path to [ csv \| csv.gz \| json \| parquet ] file
# -v VALID, path to [ csv \| csv.gz \| json \| parquet ] file
# -w HYPERPARAMETER_SWEEP, run a hyperparameter sweep with config from file
# -e ENTITY_NAME, wandb team name (if available).
# -p PROJECT_NAME, wandb project name (if available)
# -l LABEL_NAMES, provide column with label names (DEFAULT: "").






Note

Remove the ``-e entity_name`` line if you do not have a group setup in wandb




The contents of hyperparams.json, the file with the best hyperparameters identified by the sweep.{
  "output_dir": "./sweep_out/random",
  "overwrite_output_dir": false,
  "do_train": false,
  "do_eval": true,
  "do_predict": false,
  "evaluation_strategy": "epoch",
  "prediction_loss_only": false,
  "per_device_train_batch_size": 16,
  "per_device_eval_batch_size": 16,
  "per_gpu_train_batch_size": null,
  "per_gpu_eval_batch_size": null,
  "gradient_accumulation_steps": 1,
  "eval_accumulation_steps": null,
  "eval_delay": 0,
  "learning_rate": 7.796477400405317e-05,
  "weight_decay": 0.5,
  "adam_beta1": 0.9,
  "adam_beta2": 0.999,
  "adam_epsilon": 1e-08,
  "max_grad_norm": 1.0,
  "num_train_epochs": 2,
  "max_steps": -1,
  "lr_scheduler_type": "linear",
  "warmup_ratio": 0.0,
  "warmup_steps": 0,
  "log_level": "passive",
  "log_level_replica": "passive",
  "log_on_each_node": true,
  "logging_dir": "./sweep_out/random/runs/out",
  "logging_strategy": "epoch",
  "logging_first_step": false,
  "logging_steps": 500,
  "logging_nan_inf_filter": true,
  "save_strategy": "epoch",
  "save_steps": 500,
  "save_total_limit": null,
  "save_on_each_node": false,
  "no_cuda": false,
  "use_mps_device": false,
  "seed": 42,
  "data_seed": null,
  "jit_mode_eval": false,
  "use_ipex": false,
  "bf16": false,
  "fp16": false,
  "fp16_opt_level": "O1",
  "half_precision_backend": "auto",
  "bf16_full_eval": false,
  "fp16_full_eval": false,
  "tf32": null,
  "local_rank": -1,
  "xpu_backend": null,
  "tpu_num_cores": null,
  "tpu_metrics_debug": false,
  "debug": [],
  "dataloader_drop_last": false,
  "eval_steps": null,
  "dataloader_num_workers": 0,
  "past_index": -1,
  "run_name": "./sweep_out/random",
  "disable_tqdm": false,
  "remove_unused_columns": false,
  "label_names": null,
  "load_best_model_at_end": true,
  "metric_for_best_model": "loss",
  "greater_is_better": false,
  "ignore_data_skip": false,
  "sharded_ddp": [],
  "fsdp": [],
  "fsdp_min_num_params": 0,
  "fsdp_transformer_layer_cls_to_wrap": null,
  "deepspeed": null,
  "label_smoothing_factor": 0.0,
  "optim": "adamw_hf",
  "adafactor": false,
  "group_by_length": false,
  "length_column_name": "length",
  "report_to": [
    "wandb"
  ],
  "ddp_find_unused_parameters": null,
  "ddp_bucket_cap_mb": null,
  "dataloader_pin_memory": true,
  "skip_memory_metrics": true,
  "use_legacy_prediction_loop": false,
  "push_to_hub": false,
  "resume_from_checkpoint": null,
  "hub_model_id": null,
  "hub_strategy": "every_save",
  "hub_token": "<HUB_TOKEN>",
  "hub_private_repo": false,
  "gradient_checkpointing": false,
  "include_inputs_for_metrics": false,
  "fp16_backend": "auto",
  "push_to_hub_model_id": null,
  "push_to_hub_organization": null,
  "push_to_hub_token": "<PUSH_TO_HUB_TOKEN>",
  "mp_parameters": "",
  "auto_find_batch_size": false,
  "full_determinism": false,
  "torchdynamo": null,
  "ray_scope": "last",
  "ddp_timeout": 1800
}





The output is written to the specified directory, in this case
train_out and will contain the output of a standard pytorch
saved model, including some wandb specific output.

The trained model gets synced to the wandb dashboard along with
various interactive custom charts and tables which we provide as part
of our pipeline. A small subset of plots are provided for reference.
Interactive versions of these and more plots are available on wandb.

[image: _images/train_conf_mat.png]
[image: _images/train_pr.png]
[image: _images/train_roc.png]
[image: _images/train_f1.png]
[image: _images/train_loss.png]
[image: _images/train_lr.png]
Here is an example of a full wandb generated report: [https://wandb.ai/tyagilab/sweep/reports/Best-run-revived-sweep-6--Vmlldzo0OTExOTc1]

You may inspect your own generated reports after they complete.



9. Perform cross-validation

Having identified the best set of parameters and trained the model, we
next want to conduct a comprehensive review of data stability, and
we do this by evaluating model performance across different data slices.
This assessment is known as cross-validation. We make use of k-fold
cross-validation in which data is divided into k subsets and
the model is trained and tested on these individual subsets.

cross_validate \
  ../data/train.parquet parquet \
  -t ../data/test.parquet \
  -v ../data/valid.parquet \
  -e entity_name \              # <- edit as needed
  -p project_name \             # <- edit as needed
  --config_from_run p9do3gzl \  # id OR directory of best performing run
  --output_dir ../results/cv \
  -m ../results/sweep_out \     # <- overridden by --config_from_run
  -l labels \
  -k 8
# --config_from_run WANDB_RUN_ID, *best run id*
# –-output_dir OUTPUT_DIR
# -l label_names
# -k KFOLDS, run n number of kfolds

cross_validate \
  ../data/train.parquet parquet \
  -t ../data/test.parquet \
  -v ../data/valid.parquet \
  -e tyagilab \
  -p foobar \
  -c tyagilab/foobar/kixu82co \
  -o ../results/cv \
  -m ../results/sweep_out \
  -l labels \
  -k 8






Note

If both ``model_path`` and ``config_from_run`` are specified, ``config_from_run`` overrides




Note

Remove the ``-e entity_name`` line if you do not have a group setup in wandb



*****Running training*****
Num examples = 10653
Num epochs= 2
Instantaneous batch size per device = 16
Total train batch size (w, parallel, distributed & accumulation)= 16
Gradient Accumulation steps= 1
Total optimization steps= 1332
Automatic Weights & Biases logging enabled





The cross-validation runs are uploaded to the wandb dashboard along
with various interactive custom charts and tables which we provide as
part of our pipeline. These are conceptually identical to those generated
by sweep or train. A small subset of plots are provided for reference.
Interactive versions of these and more plots are available on wandb.

[image: _images/cval_conf_mat.png]
[image: _images/cval_pr.png]
[image: _images/cval_roc.png]
[image: _images/cval_f1.png]
[image: _images/cval_loss.png]
[image: _images/cval_lr.png]
Here is an example of a full wandb generated report: [https://api.wandb.ai/links/tyagilab/8vony79x]

You may inspect your own generated reports after they complete.



10. Compare different models

The aim of this step is to compare performance of different deep
learning models efficiently while avoiding computationally expensive
re-training and data download in conventional model comparison.
In the case of patient data, they are often inaccessible for privacy
reasons, and in other cases they are not uploaded by the authors of
the experiment.

For the purposes of this simple case study, we compare multiple sweeps of the
same dataset as a demonstration.
In a real life application, existing biological models
can be compared against the user-generated one.

fit_powerlaw \
  ../results/sweep_out/model_files \
  -o ../results/fit
# -m MODEL_PATH, path to trained model directory
# -o OUTPUT_DIR, path to output metrics directory





This tool outputs a variety of plots in the specified directory.

ls ../results/fit
# alpha_hist.pdf  alpha_plot.pdf  model_files/





Very broadly, the overlaid bar plots allow the user to compare the
performance of different models on the same scale. A narrow band
around 2-5 with few outliers is in general cases an indicator of
good model performance. This is a general guideline and will differ
depending on context! For a detailed explanation of these plots,
please refer to the original publication. [https://arxiv.org/pdf/2202.02842.pdf]

[image: _images/alpha_hist.png]
[image: _images/alpha_plot.png]


11. Obtain model interpretability scores

Model interpretability is often used for debugging purposes, by
allowing the user to “see” (to an extent) what a model is focusing on.
In this case, the tokens which contribute to a certain classification
are highlighted. The green colour indicates a classification towards
the target category, while the red colour indicates a classification
away from the target category. Colour intensity indicates the classification score.

In some scenarios, we can exploit this property by identifying
regulatory regions or motifs in DNA sequences, or discovering amino
acid residues in protein structure critical to its function, leading
to a deeper understanding of the underlying biological system.

gzip -cd ../data/promoter.fasta.gz | \
  head -n10 > ../data/subset.fasta
interpret \
  ../results/sweep_out/model_files \
  ../data/subset.fasta \
  -l PROMOTER NON-PROMOTER \
  -o ../results/model_interpret
# -t TOKENISER_PATH, path to tokeniser.json file to load data
# -o OUTPUT_DIR, specify path for output





ECK120010480 CSGDP1 REVERSE 1103344 SIGMA38.html
ECK120010489 OSMCP2 FORWARD 1556606 SIGMA38.html
ECK120010491 TOPAP1 FORWARD 1330980 SIGMA32 STRONG.html
ECK120010496 YJAZP  FORWARD 4189753 SIGMA32 STRONG.html
ECK120010498 YADVP2 REVERSE 156224  SIGMA38.html





[image: _images/ECK120009966.png]
[image: _images/ECK120016719.png]


Citation

Cite our manuscript here:

@article{chen2023genomicbert,
    title={genomicBERT and data-free deep-learning model evaluation},
    author={Chen, Tyrone and Tyagi, Navya and Chauhan, Sarthak and Peleg, Anton Y and Tyagi, Sonika},
    journal={bioRxiv},
    month={jun},
    pages={2023--05},
    year={2023},
    publisher={Cold Spring Harbor Laboratory},
    doi={10.1101/2023.05.31.542682},
    url={https://doi.org/10.1101/2023.05.31.542682}
}





Cite our software here:

@software{tyrone_chen_2023_8135591,
  author       = {Tyrone Chen and
                  Navya Tyagi and
                  Sarthak Chauhan and
                  Anton Y. Peleg and
                  Sonika Tyagi},
  title        = {{genomicBERT and data-free deep-learning model
                  evaluation}},
  month        = jul,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {latest},
  doi          = {10.5281/zenodo.8135590},
  url          = {https://doi.org/10.5281/zenodo.8135590}
}









            

          

      

      

    

  

    
      
          
            
  
genomeNLP: Case study of Protein


4. Setting up a biological dataset

Understanding of the data and experimental design is a necessary first step to
analysis. In our case study, we perform a simple two case classification, where the
dataset consists of a corpora of biological sequence data belonging to two categories.
Protein sequence associated with DNA binding proteins (DBP) and RNA binding proteins (RBP) are available.
In the context of biology, DBP interact with DNA molecules, playing roles in
gene regulation, DNA replication, repair, and structural organization while RBP
interact with various RNA types and function in processes like splicing, RNA stability,
translation regulation, and ribosome function. Aberrations in DBP and RBP are implicated in
various diseases, including cancer and neurodegenerative disorders. Identifying and classifying
these proteins helps in studying disease mechanisms and developing potential therapeutic strategies.
Therefore, our aim is to classify sequences into DNA binding protein and RNA binding protein categories.

Our data is available in the form of fasta files. fasta files are a common
format for storing biological sequence data. They typically contain headers that
provide information about the sequence, followed by  the sequence itself. They can
also store other nucleic acid data, as well as protein. The fasta format contains
headers with a leading >. Lines without > contain biological sequence data
and can be newline separated. In this example, the full set of characters are
the 20 naturally occurring amino acids Alanine A, Cysteine C, Aspartic Acid D,
Glutamic Acid E, Phenylalanine F, Glycine G, Histidine H, Isoleucine I,
Lysine K, Leucine L, Methionine M, Asparagine N, Proline P, Glutamine
Q, Arginine R, Serine S, Threonine T, Valine V, Tryptophan W and
Tyrosine Y. These are the building blocks of proteins.

#!/bin/bash
# download and preprocess protein data for RNA and DNA binding proteins
# original article: https://doi.org/10.1016/j.jmb.2020.09.008
wget 'http://bliulab.net/iDRBP_MMC/static/dataset/training_dataset.txt'
wget 'http://bliulab.net/iDRBP_MMC/static/dataset/test_dataset_TEST474.txt'
wget 'http://bliulab.net/iDRBP_MMC/static/dataset/test_dataset_PDB255.txt'

csplit --digits=2 --quiet --prefix=outfile training_dataset.txt "/------------------------------------------------------------/+1" "{*}"
sed '$d' outfile02 | sed '$d' > train_dna_binding.fa
sed '$d' outfile04 | sed '$d' > train_rna_binding.fa
rm outfile0*

csplit --digits=2 --quiet --prefix=outfile test_dataset_TEST474.txt "/------------------------------------------------------------/+1" "{*}"
sed '$d' outfile02 | sed '$d' > test_TEST474_dna_binding.fa
sed '$d' outfile04 | sed '$d' > test_TEST474_rna_binding.fa
rm outfile0*

csplit --digits=2 --quiet --prefix=outfile test_dataset_PDB255.txt "/------------------------------------------------------------/+1" "{*}"
sed '$d' outfile02 | sed '$d' > test_PDB255_dna_binding.fa
sed '$d' outfile04 | sed '$d' > test_PDB255_rna_binding.fa
rm outfile0*

# we combine the full dataset and later repartition it with the pipeline
cat train_dna_binding.fa test_TEST474_dna_binding.fa test_PDB255_dna_binding.fa > dna_binding.fa
cat train_rna_binding.fa test_TEST474_rna_binding.fa test_PDB255_rna_binding.fa > rna_binding.fa
gzip dna_binding.fa
gzip rna_binding.fa





The files can be downloaded using the above script. The original publication is accessible here. [https://doi.org/10.1016/j.jmb.2020.09.008]

HEADER:   >Q7YU81
SEQUENCE: MATLIPVNGGHPAASGQSSNVEATYEDMFKEITRKLYGEETGNGLHTLGTPVAQVATSGP
          TAVPEGEQRSFTNLQQLDRSAAPSIEYESSAAGASGNNVATTQANVIQQQQQQQQQAESG
          NSVVVTASSGATVVPAPSVAAVGGFKSEDHLSTAFGLAALMQNGFAAGQAGLLKAGEQQQ
          RWAQDGSGLVAAAAAEPQLVQWTSGGKLQSYAHVNQQQQQQQQPHQSTPKSKKHRQEHAA..






Note

In real world  data, other characters are available which refer to multiple possible
nucleotides, for example ``W`` indicates either an ``A`` or a ``T``. RNA includes
the character ``U``, and proteins include additional letters of the alphabet.



Tokenisation in genomics involves segmenting biological sequences into smaller
units, called tokens (or k-mers in biology) for further processing.
In the context of proteins, tokens can represent individual amino acids,
k-mers or other biologically meaningful segments. Just as in conventional NLP,
tokenisation is required to facilitate most downstream operations.

Here, we provide gzipped fasta file(s) as input. While conventional biological
tokenisation splits a sequence into arbitrary-length segments, empirical
tokenisation derives the resulting tokens directly from the corpus,
with vocabulary size as the only user-defined parameter.
Data is then split into training, testing and/or validation partitions
as desired by the user and automatically reformatted for input into the
deep learning pipeline.


Note

We provide the conventional k-merisation method as well as an option for users.
In our pipeline specifically, the empirical tokenisation and data object
creation is split into two steps, while k-merisation combines both in one
operation. This is due to the empirical tokenisation process having to
“learn” tokens from the data.



# Empirical tokenisation pathway
$ tokenise_bio  -i dna_binding.fa.gz rna_binding.fa.gz  -t prot.2000.json -v 2000
# -i INFILE_PATHS path to files with biological seqs split by line
# -t TOKENISER_PATH path to tokeniser.json file to save or load data
# -v VOCAB_SIZE select vocabulary size (DEFAULT: 32000)





This generates a json file with tokens and their respective weights or IDs.
You should see some output like this.

[00:00:00] Pre-processing sequences
[00:00:00] Suffix array seeds
[00:00:14] EM training







5. Format a dataset for input into genomeNLP

In this section, we reformat the data to meet the requirements
of our pipeline which takes specifically structured inputs. This
intermediate data structure serves as the foundation for downstream
analyses and facilitates seamless integration with the pipeline.
Our pipeline contains a method that performs this automatically, generating a
reformatted dataset with the desired structure.


Note

The data format is identical to that used by the HuggingFace
``datasets`` and ``transformers`` libraries.



# Empirical tokenisation pathway
$ create_dataset_bio \
    dna_binding.fa.gz  \
    rna_binding.fa.gz \
    prot.2000.json \
    -o prot.2000.512 \
    --no_reverse_complement \
    -c 512
# -o OUTFILE_DIR write dataset to directory as
# [ csv \| json \| parquet \| dir/ ] (DEFAULT:"hf_out/")
# --no_reverse_complement  turn off reverse complement (DEFAULT: ON)
# -c CHUNK  split seqs into n-length blocks (DEFAULT: None)
# default datasets split: train 90%, test 5% and validation set 5%





The output is a reformatted dataset containing the same information.
Properties required for a typical machine learning pipeline are added,
including labels, customisable data splits and token identifiers.

DATASET AFTER SPLIT:
DatasetDict ({
  train: Dataset ({
  features: ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask’],
  num_rows: 9719 })
  test: Dataset ({
  features: ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask’],
  num_rows: 540 })
  valid: Dataset ({
  features: ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask’],
  num_rows: 540 })
})






Note

The column ``token_type_ids`` is not actually needed in this
specific case study, but it is safely ignored in such cases.



SAMPLE TOKEN MAPPING FOR FIRST 5 TOKENS IN SEQ:
TOKEN ID: 400  | TOKEN: MA
TOKEN ID: 533  | TOKEN: SQS
TOKEN ID: 1742 | TOKEN: EPG
TOKEN ID: 296  | TOKEN: YL
TOKEN ID: 346  | TOKEN: AAA







6. Preparing a hyperparameter sweep

In machine learning, achieving optimal model performance often requires
finding the right combination of hyperparameters (assuming the input
data is viable). Hyperparameters vary depending on the specific
algorithm and framework being used, but commonly include learning rate,
dropout rate, batch size, number of layers and optimiser choice.
These parameters heavily influence the learning process and subsequent
performance of the model.

For this reason, hyperparameter sweeps are normally carried out to
systematically test combinations of hyperparameters, with the end goal of identifying the
configuration that produces the best model performance.
Usually, sweeps are carried out on a small partition of the data only
to maximise efficiency of compute resources, but it is not uncommon to
perform sweeps on entire datasets. Various strategies,
such as grid search, random search, or bayesian optimisation, can be
employed during a hyperparameter sweep to sample parameter values.
Additional strategies such as early stopping can also be used.

To streamline the hyperparameter optimization process, we use the
wandb (Weights & Biases) platform which has a user-friendly interface
and powerful tools for tracking experiments and visualising results.

First, sign up for a wandb account at: https://wandb.ai/site and login
by pasting your API key.

$ wandb login
$ wandb: Paste an API key from your profile, and hit enter and hit enter or press ctrl+c to quit :





Now, we use the sweep tool to perform hyperparameter sweep. Search
strategy, parameters and search space are passed in as a json file.

# sweep parameters
{
  "method": "random",
  "name": "sweep",
  "metric": {
    "goal": "maximize",
    "name": "eval/f1"
  },
  "parameters": {
    "batch_size": {"values": [5, 10, 15]},
    "epochs": {"values": [1, 2, 3, 4, 5]},
    "learning_rate": {"max": 0.1, "min": 0.0001}
  }
}





$ sweep \
    prot.2000.512/train.parquet \
    parquet \
    prot.2000.json \
    --test prot.2000.512/test.parquet \
    --valid prot.2000.512/valid.parquet \
    --hyperparameter_sweep random.json \
    --entity_name tyagilab \ # <- edit as needed
    --project_name p_sweep \ # <- edit as needed
    --group_name prot.2000 \
    --output_dir sweep.2000 \
    --label_names "labels" \
    -n 3

# --test, path to [ csv \| csv.gz \| json \| parquet ] file
# --valid, path to [ csv \| csv.gz \| json \| parquet ] file
# --hyperparameter_sweep, run a hyperparameter sweep with config from file
# --entity_name, wandb team name (if available).
# --project_name, wandb project name (if available)
# --group_name, provide wandb group name (if desired)
# --label_names, provide column with label names (DEFAULT: "")
# -n SWEEP_COUNT, run n hyperparameter sweeps
# -o OUTPUT_DIR, specify path for output (DEFAULT: ./sweep_out)





*****Running training*****
Num examples = 9719
Num epochs= 1
Instantaneous batch size per device = 5
Total train batch size per device = 5
Gradient Accumulation steps= 1
Total optimization steps= 1944





The output is written to the specified directory, in this case
sweep_out and will contain the output of a standard pytorch
saved model, including some wandb specific output.

The sweeps gets synced to the wandb dashboard along with various
interactive custom charts and tables which we provide as part of our
pipeline. A small subset of plots are provided for reference.
Interactive versions of these and more plots are available on wandb.

[image: _images/sweep_conf_mat1.png]
[image: _images/sweep_pr1.png]
[image: _images/sweep_roc1.png]
[image: _images/sweep_f11.png]
[image: _images/sweep_loss1.png]
[image: _images/sweep_lr1.png]
Here is an example of a full wandb generated report: [https://api.wandb.ai/links/tyagilab/6nxj69ro]

You may inspect your own generated reports after they complete.



7. Selecting optimal hyperparameters for training

Having completed a sweep, we next identified the best set
of parameters for model training. We do this by examining training metrics.
These serve as quantitative measures of a model’s performance during
training. These metrics provide insights into the model’s accuracy and
generalisation capabilities. We explore commonly used training metrics,
including accuracy, loss, precision, recall, and f1 score to inform us
of a model’s performance

A key event we want to avoid is overfitting. Overfitting occurs when a
learning model performs exceptionally well on the training data but
fails to generalise to unseen data, making it unfit for use outside of the
specific scope of the experiment. This can be detected by observing performance
metrics, if the accuracy decreases and later increases an overfit
event has occurred. In real world applications, this can
lead to adverse events that directly impact us, considering that such
models are used in applications such as drug prediction or self-driving cars.
Here, we use the f1 score calculated on the testing set as the main
metric of interest. We showed that we obtain a best f1 score of 0.677488189237731.

Best run kind-sweep-18 with eval/f1=0.677488189237731
BEST MODEL AND CONFIG FILES SAVED TO: protein_sweep/model_files
HYPERPARAMETER SWEEP END





`Here is an example of a full wandb generated report for the "best" run.
<https://api.wandb.ai/links/tyagilab/58zmy653`__

You may inspect your own generated reports after they complete.



8. With the selected hyperparameters, train the full dataset

In a conventional workflow, the sweep is performed on a small
subset of training data. The resulting parameters are then
recorded and used in the actual training step on the full dataset.
Here, we perform the sweep on the entire dataset, and hence
remove the need for further training. If you perform this on your
own data and want to use a small subset, you can do so and then
pass the recorded hyperparameters with the same input data to
the train function of the pipeline. We include an example of
this below for completeness, but you can skip this for our
specific case study. Note that the input is almost identical to
sweep.

$ train \
    prot.2000.512/train.parquet \
    "parquet" \
    prot.2000.json \
    --test prot.2000.512/test.parquet \
    --valid prot.2000.512/valid.parquet \
    --entity_name tyagilab \
    --project_name prot \
    --group_name train.2000 \
    --config_from_run tyagilab/prot/2niwyeqs \
    --output_dir train.out \
    --label_names "labels" \
    --overwrite_output_dir
# -t TEST, path to [ csv \| csv.gz \| json \| parquet ] file
# -v VALID, path to [ csv \| csv.gz \| json \| parquet ] file
# -w HYPERPARAMETER_SWEEP, run a hyperparameter sweep with config from file
# -e ENTITY_NAME, wandb team name (if available).
# -p PROJECT_NAME, wandb project name (if available)
# -l LABEL_NAMES, provide column with label names (DEFAULT: "").
# -n SWEEP_COUNT, run n hyperparameter sweeps






The contents of hyperparams.json, the file with the best hyperparameters identified by the sweep.{
  "output_dir": "./sweep_out/random",
  "overwrite_output_dir": false,
  "do_train": false,
  "do_eval": true,
  "do_predict": false,
  "evaluation_strategy": "epoch",
  "prediction_loss_only": false,
  "per_device_train_batch_size": 32,
  "per_device_eval_batch_size": 32,
  "per_gpu_train_batch_size": null,
  "per_gpu_eval_batch_size": null,
  "gradient_accumulation_steps": 1,
  "eval_accumulation_steps": null,
  "eval_delay": 0,
  "learning_rate": 0.00000017248305228664,
  "weight_decay": 0.5,
  "adam_beta1": 0.9,
  "adam_beta2": 0.999,
  "adam_epsilon": 1e-08,
  "max_grad_norm": 1.0,
  "num_train_epochs": 2,
  "max_steps": -1,
  "lr_scheduler_type": "linear",
  "warmup_ratio": 0.0,
  "warmup_steps": 0,
  "log_level": "passive",
  "log_level_replica": "passive",
  "log_on_each_node": true,
  "logging_dir": "./sweep_out/random/runs/out",
  "logging_strategy": "epoch",
  "logging_first_step": false,
  "logging_steps": 500,
  "logging_nan_inf_filter": true,
  "save_strategy": "epoch",
  "save_steps": 500,
  "save_total_limit": null,
  "save_on_each_node": false,
  "no_cuda": false,
  "use_mps_device": false,
  "seed": 42,
  "data_seed": null,
  "jit_mode_eval": false,
  "use_ipex": false,
  "bf16": false,
  "fp16": false,
  "fp16_opt_level": "O1",
  "half_precision_backend": "auto",
  "bf16_full_eval": false,
  "fp16_full_eval": false,
  "tf32": null,
  "local_rank": -1,
  "xpu_backend": null,
  "tpu_num_cores": null,
  "tpu_metrics_debug": false,
  "debug": [],
  "dataloader_drop_last": false,
  "eval_steps": null,
  "dataloader_num_workers": 0,
  "past_index": -1,
  "run_name": "./sweep_out/random",
  "disable_tqdm": false,
  "remove_unused_columns": false,
  "label_names": null,
  "load_best_model_at_end": true,
  "metric_for_best_model": "loss",
  "greater_is_better": false,
  "ignore_data_skip": false,
  "sharded_ddp": [],
  "fsdp": [],
  "fsdp_min_num_params": 0,
  "fsdp_transformer_layer_cls_to_wrap": null,
  "deepspeed": null,
  "label_smoothing_factor": 0.0,
  "optim": "adamw_hf",
  "adafactor": false,
  "group_by_length": false,
  "length_column_name": "length",
  "report_to": [
    "wandb"
  ],
  "ddp_find_unused_parameters": null,
  "ddp_bucket_cap_mb": null,
  "dataloader_pin_memory": true,
  "skip_memory_metrics": true,
  "use_legacy_prediction_loop": false,
  "push_to_hub": false,
  "resume_from_checkpoint": null,
  "hub_model_id": null,
  "hub_strategy": "every_save",
  "hub_token": "<HUB_TOKEN>",
  "hub_private_repo": false,
  "gradient_checkpointing": false,
  "include_inputs_for_metrics": false,
  "fp16_backend": "auto",
  "push_to_hub_model_id": null,
  "push_to_hub_organization": null,
  "push_to_hub_token": "<PUSH_TO_HUB_TOKEN>",
  "mp_parameters": "",
  "auto_find_batch_size": false,
  "full_determinism": false,
  "torchdynamo": null,
  "ray_scope": "last",
  "ddp_timeout": 1800
}





The output is written to the specified directory, in this case
train_out and will contain the output of a standard pytorch
saved model, including some wandb specific output.

The trained model gets synced to the wandb dashboard along with
various interactive custom charts and tables which we provide as part
of our pipeline. A small subset of plots are provided for reference.
Interactive versions of these and more plots are available on wandb.

[image: _images/train_conf_mat1.png]
[image: _images/train_pr1.png]
[image: _images/train_roc1.png]
[image: fig/protein/train_f1.png]
[image: _images/train_loss1.png]
[image: _images/train_lr1.png]
Here is an example of a full wandb generated report: [https://api.wandb.ai/links/tyagilab/zwfrwh80]

You may inspect your own generated reports after they complete.



9. Perform cross-validation

Having identified the best set of parameters and trained the model, we
next want to conduct a comprehensive review of data stability, and
we do this by evaluating model performance across different data slices.
This assessment is known as cross-validation. We make use of k-fold
cross-validation in which data is divided into k subsets and
the model is trained and tested on these individual subsets.

$ cross_validate \
    data.csv/train.parquet parquet \
    -t data.csv/test.parquet \
    -v data.csv/valid.parquet \
    -e tyagilab \
    -p testm3 \
    --config_from_run p9do3gzl \  # id of best performing run
    --output_dir cv \
    -m sweep_out \
    -l labels \
    -k 3
# --config_from_run WANDB_RUN_ID, *best run id*
# –-output_dir OUTPUT_DIR
# -l label_names
# -k KFOLDS, run n number of kfolds





*****Running training*****
Num examples = 8504
Num epochs= 4
Instantaneous batch size per device = 64
Total train batch size (w, parallel, distributed & accumulation)= 64
Gradient Accumulation steps= 1
Total optimization steps= 532
Automatic Weights & Biases logging enabled





The cross-validation runs are uploaded to the wandb dashboard along
with various interactive custom charts and tables which we provide as
part of our pipeline. These are conceptually identical to those generated
by sweep or train. A small subset of plots are provided for reference.
Interactive versions of these and more plots are available on wandb.

[image: _images/cval_conf_mat1.png]
[image: _images/cval_pr1.png]
[image: _images/cval_roc1.png]
[image: _images/cval_f11.png]
[image: _images/cval_loss1.png]
[image: _images/cval_lr1.png]
Here is an example of a full wandb generated report: [https://api.wandb.ai/links/tyagilab/ocw0rct8]

You may inspect your own generated reports after they complete.



10. Compare different models

The aim of this step is to compare performance of different deep
learning models efficiently while avoiding computationally expensive
re-training and data download in conventional model comparison.
In the case of patient data, they are often inaccessible for privacy
reasons, and in other cases they are not uploaded by the authors of
the experiment.

For the purposes of this simple case study, we compare multiple sweeps of the
same dataset as a demonstration.
In a real life application, existing biological models
can be compared against the user-generated one.

$ fit_powerlaw tyagilab/prot/d5bj9n5y tyagilab/prot/2niwyeqs -o fit_prot
# -m MODEL_PATH, path to trained model directory
# -o OUTPUT_DIR, path to output metrics directory





This tool outputs a variety of plots in the specified directory.

$ ls fit_prot
> alpha_hist.pdf  alpha_plot.pdf  model_files/





Very broadly, the overlaid bar plots allow the user to compare the
performance of different models on the same scale. A narrow band
around 2-5 with few outliers is in general cases an indicator of
good model performance. This is a general guideline and will differ
depending on context! For a detailed explanation of these plots,
please refer to the original publication. [https://arxiv.org/pdf/2202.02842.pdf]

[image: _images/alpha_hist1.png]
[image: _images/alpha_plot1.png]


11. Obtain model interpretability scores

Model interpretability is often used for debugging purposes, by
allowing the user to “see” (to an extent) what a model is focusing on.
In this case, the tokens which contribute to a certain classification
are highlighted. The green colour indicates a classification towards
the target category, while the red colour indicates a classification
away from the target category. Colour intensity indicates the classification score.

In some scenarios, we can exploit this property by identifying
regulatory regions or motifs in DNA sequences, or discovering amino
acid residues in protein structure critical to its function, leading
to a deeper understanding of the underlying biological system.

$ gzip -cd dna.binding.fa.gz | head -n22 > dna_subset.fasta
$ interpret tyagilab/prot/d5bj9n5y dna_subset.fasta -o prot_interpret
# -o OUTPUT_DIR, specify path for output













Citation

Cite our manuscript here:

@article{chen2023genomicbert,
    title={genomicBERT and data-free deep-learning model evaluation},
    author={Chen, Tyrone and Tyagi, Navya and Chauhan, Sarthak and Peleg, Anton Y and Tyagi, Sonika},
    journal={bioRxiv},
    month={jun},
    pages={2023--05},
    year={2023},
    publisher={Cold Spring Harbor Laboratory},
    doi={10.1101/2023.05.31.542682},
    url={https://doi.org/10.1101/2023.05.31.542682}
}





Cite our software here:

@software{tyrone_chen_2023_8135591,
  author       = {Tyrone Chen and
                  Navya Tyagi and
                  Sarthak Chauhan and
                  Anton Y. Peleg and
                  Sonika Tyagi},
  title        = {{genomicBERT and data-free deep-learning model
                  evaluation}},
  month        = jul,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {latest},
  doi          = {10.5281/zenodo.8135590},
  url          = {https://doi.org/10.5281/zenodo.8135590}
}









            

          

      

      

    

  

    
      
          
            
  
Create a token set from sequences

This explains the use of kmerise_bio.py and tokenise_bio.py. In tokenise_bio.py we empirically derive tokens from biological sequence data which can be used in downstream applications such as genomicBERT.


Source data

Any fasta file can be used (nucleic acid or protein).



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:


Empirical tokenisation

python tokenise_bio.py -i [ INFILE_PATH ... ] -t TOKENISER_PATH





You will obtain a json file with weights for each token. Any special tokens you add will also be present. This will be used in the next step of creating a HuggingFace compatible dataset object.



Conventional k-mers

python kmerise_bio.py -i [INFILE_PATH ... ] -t TOKENISER_PATH -k KMER_SIZE -l [LABEL ... ] -c CHUNK -o OUTFILE_DIR





For k-mers, HuggingFace-like dataset files will be written to disk in the same operation. This can be loaded directly into a “conventional” deep learning pipeline.

However, the file is not split into partitions. You can use it directly if you already have other partitions corresponding to training, testing and validation data. If not, you will need to create a dataset in the next stage, using the tokeniser.json file generated in this step.




Notes

Please refer to HuggingFace tokenisers [https://github.com/huggingface/tokenizers] for more detailed information:



Usage


Empirical tokenisation

For empirical tokenisation, the next step is to run create_dataset_bio.py. Reverse complementing Y/R is supported.

python tokenise.py -h
usage: tokenise.py [-h] [-i INFILE_PATHS [INFILE_PATHS ...]] [-t TOKENISER_PATH]
                   [-s SPECIAL_TOKENS [SPECIAL_TOKENS ...]] [-e EXAMPLE_SEQ]

Take gzip fasta file(s), run empirical tokenisation and export json.

options:
  -h, --help            show this help message and exit
  -i INFILE_PATHS [INFILE_PATHS ...], --infile_paths INFILE_PATHS [INFILE_PATHS ...]
                        path to files with biological seqs split by line
  -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                        path to tokeniser.json file to save or load data
  -v VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        select vocabulary size (DEFAULT: 32000)
  -b BREAK_SIZE, --break_size BREAK_SIZE
                        split long reads, keep all by default (DEFAULT: None)
  -c CASE, --case CASE  change case, retain original by default (DEFAULT: None)
  -s SPECIAL_TOKENS [SPECIAL_TOKENS ...], --special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]
                        assign special tokens, eg space and pad tokens
                        (DEFAULT: ["<s>", "</s>", "<unk>", "<pad>", "<mask>"])
  -e EXAMPLE_SEQ, --example_seq EXAMPLE_SEQ
                        show token to seq map for a sequence (DEFAULT: None)

      usage: compare_empirical_tokens.py [-h] [-t TOKENISER_PATH] [-w TOKEN_WEIGHT] [-m MERGE_STRATEGY]
                                 [-p POOLING_STRATEGY] [-o OUTFILE_PATH]
                                 infile_paths [infile_paths ...]

# supplementary script for evaluating tokenisation performance across contig lengths or sequence subsets
python compare_empirical_tokens.py -h
usage: compare_empirical_tokens.py [-h] [-t TOKENISER_PATH] [-w TOKEN_WEIGHT] [-m MERGE_STRATEGY]
                                 [-p POOLING_STRATEGY] [-o OUTFILE_PATH]
                                 infile_paths [infile_paths ...]
Take token json files, show intersection and weight variance.

positional arguments:
  infile_paths          path to tokeniser files generated by tokenise_bio

optional arguments:
  -h, --help            show this help message and exit
  -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                        path to pooled tokeniser (DEFAULT: pooled.json)
  -w TOKEN_WEIGHT, --token_weight TOKEN_WEIGHT
                        path to output file showing token weights status
  -m MERGE_STRATEGY, --merge_strategy MERGE_STRATEGY
                        merge tokens using [ inner | outer ] (DEFAULT: None)
  -p POOLING_STRATEGY, --pooling_strategy POOLING_STRATEGY
                        pool tokens using [ mean | median | max | min ] (DEFAULT: None)
  -o OUTFILE_PATH, --outfile_path OUTFILE_PATH
                        path to output boxplot showing token weights distribution






Handling long reads

The original word segmentation algorithm was designed for sentences in human language. In biology, a chromosome can be formulated as a single sentence. In such cases, empirical tokenisation breaks if a sequence length of greater than ~3-4 Mbp is provided.

Since there is a limit to sequence length, here we explore the feasability of subsampling sequences as a workaround. We obtain a small genome which can be tokenised fully as a control, and split its genome into different contig lengths to get a collection of smaller sequences. We then compare the (a) empirical token weights and (b) token identity across different contig lengths.

We choose the Haemophilus influenzae genome since it can be fully tokenised:

#!/bin/sh
# download Haemophilus influenzae genome
curl -OJX GET "https://api.ncbi.nlm.nih.gov/datasets/v2alpha/genome/accession/GCF_000931575.1/download?include_annotation_type=GENOME_FASTA,GENOME_GFF,RNA_FASTA,CDS_FASTA,PROT_FASTA,SEQUENCE_REPORT&filename=GCF_000931575.1.zip" -H "Accept: application/zip"
unzip GCF_000931575.1.zip
cp ncbi_dataset/data/GCF_000931575.1/GCF_000931575.1_ASM93157v1_genomic.fna ./
gzip GCF_000931575.1_ASM93157v1_genomic.fna





We split the genome into different contig lengths spanning 2**9 to 2**20, and retain the full genome as a control:

# NOTE: this will take some time!
# 0 for ground truth
for len in 0 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576; do
  tokenise_bio \
  -i GCF_000931575.1_ASM93157v1_genomic.fna.gz \
  -v 10000 \
  -t tokens_contigs.${len}.10000.json \
  -c upper \
  -b ${len}

# you will see the tokeniser files generated as a result
ls *10000.json





Next, we examine the token weights for each contig length compared to the whole genome. Token weights and outliers are exported, along with a boxplot showing variance of the weight distribution:

# compare the ground truth tokens vs each contig length
for i in *json; do
  compare_empirical_tokens \
    tokens_contigs.0.10000.json \
    $i \
    -t ${i}.tsv \
    -o ${i}.pdf
done

# compare all contig lengths together
compare_empirical_tokens *json -t all.tsv -o all.pdf






Note

You can use compare_empirical_tokens with any combination of json files as a quality control metric on your own data. We suggest a contig length of 1M as an upper limit.:



We examine the results and observe two key patterns:
- Token weight variance from ground truth decreases with longer contigs
- Token identity overlap with ground truth increases with longer contigs

However, the variance in weight and identity overlap is not extremely large, even with very short contigs. Across different contig lengths, lower weighted tokens tend to be more variable, while highly weighted tokens are more stable.

Token set identity per contig length:



	Contig length

	Token overlap

	Percentage identity





	0

	10000 (control)

	100.00



	512

	7570

	75.70



	1024

	8131

	81.31



	2048

	8585

	85.85



	4096

	8849

	88.49



	8192

	9057

	90.57



	16384

	9196

	91.96



	32768

	9349

	93.49



	65536

	9422

	94.22



	131072

	9512

	95.12



	262144

	9593

	95.93



	524288

	9618

	96.18



	1048576

	9674

	96.74






Due to size, only a subset of plots are shown for reference. The full plots can be generated from the above code.

Full genome length (highest weighted tokens):

[image: fig/contig_0_high.png]
Full genome length (lowest weighted tokens):

[image: fig/contig_0_low.png]
Long contigs 1048576 bp (highest weighted tokens):

[image: fig/contig_1048576_high.png]
Long contigs 1048576 bp (lowest weighted tokens):

[image: fig/contig_1048576_low.png]
Short contigs 512 bp (highest weighted tokens):

[image: fig/contig_512_high.png]
Short contigs 512 bp (lowest weighted tokens):

[image: fig/contig_512_low.png]


Pooling multiple tokenisers

If you want to pool multiple tokenisers, you can use compare_empirical_tokens with additional options -m for inner or outer merge, and -p for min, max, mean, median weight pooling.




Conventional k-mers

Note that this step also generates a dataset object in the same operation. Reverse complementing Y/R is supported.

Here we take a list of infile paths, and a list of matching labels. Eg --infile_path file1.fasta file2.fasta, then --label 0 1.

python ../src/kmerise_bio.py -h
usage: kmerise_bio.py [-h] [-i INFILE_PATH [INFILE_PATH ...]]
                      [-o OUTFILE_PATH] [-c CHUNK] [-m MAPPINGS]
                      [-t TOKENISER_PATH] [-k KMER_SIZE]
                      [-l LABEL [LABEL ...]] [--no_reverse_complement]

Take gzip fasta file(s), kmerise reads and export csv.

options:
  -h, --help            show this help message and exit
  -i INFILE_PATH [INFILE_PATH ...], --infile_path INFILE_PATH [INFILE_PATH ...]
                        path to files with biological seqs split by line
  -o OUTFILE_PATH, --outfile_path OUTFILE_PATH
                        path to output huggingface-like dataset.csv file
  -c CHUNK, --chunk CHUNK
                        split seqs into n-length blocks (DEFAULT: None)
  -m MAPPINGS, --mappings MAPPINGS
                        path to output mappings file
  -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                        path to tokeniser.json file to save data
  -k KMER_SIZE, --kmer_size KMER_SIZE
                        split seqs into n-length blocks (DEFAULT: None)
  -l LABEL [LABEL ...], --label LABEL [LABEL ...]
                        provide integer label for seqs (order must match
                        infile_path!)
  --no_reverse_complement
                        turn off reverse complement (DEFAULT: ON)










            

          

      

      

    

  

    
      
          
            
  
Create a dataset object from sequences

This explains the use of create_dataset_bio.py. We generate a HuggingFace dataset object given a fasta file containing sequences, a fasta file containing control sequences, and a pretrained tokeniser from tokeniser.py. The dataset can then enter the genomicBERT pipeline.


Source data

Any fasta file can be used, with each fasta file representing a sequence collection of one category. Sample input data files will be available in data/. If needed, control data can be generated with generate_synthetic.py. Tokeniser can be generated with tokenise.py.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:

python create_dataset_bio.py <INFILE_SEQS_1> <INFILE_SEQS_2> <TOKENISER_PATH> -c CHUNK -o OUTFILE_DIR





HuggingFace-like dataset files will be written to disk. This can be loaded directly into a “conventional” deep learning pipeline.



Notes

It is possible to split the dataset into chunks of n-length. This is useful when the length of individual sequences become too large to fit in memory. A sequence length of 256-512 units can effectively fit on most modern GPUs. Sequence chunks are treated as independent samples of the same class and no merging of weights is performed in this implementation. Note that create_dataset_bio.py and create_dataset_nlp.py workflows are structured differently to account for the differences in conventional biological vs human language corpora, but the processes are conceptually identical.

More information on the HuggingFace 🤗 Dataset object is available online [https://huggingface.co/docs/datasets/package_reference/main_classes].



Usage

python create_dataset_bio.py -h
usage: create_dataset_bio.py [-h] [-o OUTFILE_DIR] [-s SPECIAL_TOKENS [SPECIAL_TOKENS ...]] [-c CHUNK]
                             [--split_train SPLIT_TRAIN] [--split_test SPLIT_TEST]
                             [--split_val SPLIT_VAL] [--no_reverse_complement] [--no_shuffle]
                             infile_path control_dist tokeniser_path

Take control and test fasta files, tokeniser and convert to HuggingFace🤗 dataset object. Fasta files
can be .gz. Sequences are reverse complemented by default.

positional arguments:
  infile_path           path to fasta/gz file
  control_dist          supply control seqs
  tokeniser_path        load tokeniser file

optional arguments:
  -h, --help            show this help message and exit
  -o OUTFILE_DIR, --outfile_dir OUTFILE_DIR
                        write 🤗 dataset to directory as [ csv | json | parquet | dir/ ] (DEFAULT:
                        "hf_out/")
  -s SPECIAL_TOKENS [SPECIAL_TOKENS ...], --special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]
                        assign special tokens, eg space and pad tokens (DEFAULT: ["<s>", "</s>",
                        "<unk>", "<pad>", "<mask>"])
  -c CHUNK, --chunk CHUNK
                        split seqs into n-length blocks (DEFAULT: None)
  --split_train SPLIT_TRAIN
                        proportion of training data (DEFAULT: 0.90)
  --split_test SPLIT_TEST
                        proportion of testing data (DEFAULT: 0.05)
  --split_val SPLIT_VAL
                        proportion of validation data (DEFAULT: 0.05)
  --no_reverse_complement
                        turn off reverse complement (DEFAULT: ON)
  --no_shuffle          turn off shuffle for data split (DEFAULT: ON)









            

          

      

      

    

  

    
      
          
            
  
Create embeddings from a tokenised dataset

This explains the use of create_embedding_bio_sp.py and create_embedding_bio_kmers.py. Only use this if you plan to use embeddings directly.


Source data

Use csv files created from either create_dataset_bio.py or kmerise_bio.py.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.




Empirical tokenisation

create_embedding_bio_sp.py -i [INFILE_PATH ... ] -t TOKENISER_PATH -o OUTFILE_DIR







Conventional k-mers

create_embedding_bio_kmers.py -i [INFILE_PATH ... ] -t TOKENISER_PATH  -o OUTFILE_DIR





The resulting output will be used in embedding_pipeline.py.




Notes

Embeddings are generated for each individual token. For example:

# original seq of category X
AAAAACCCCCTTTTTGGGGG

# split into tokens using desired method
[AAAAA]
[CCCCC]
...

# each token gets projected onto an embedding
[0.1 0.2 0.3 ...]
[0.3 0.4 0.5 ...]
...







Usage


Empirical tokenisation

python create_embedding_bio_sp.py -h
usage: create_embedding_bio_sp.py [-h] [-i INFILE_PATH [INFILE_PATH ...]]
                                  [-o OUTPUT_DIR] [-c COLUMN_NAMES]
                                  [-l LABELS] [-x COLUMN_NAME] [-m MODEL]
                                  [-t TOKENISER_PATH]
                                  [-s SPECIAL_TOKENS [SPECIAL_TOKENS ...]]
                                  [-n NJOBS] [--w2v_min_count W2V_MIN_COUNT]
                                  [--w2v_sg W2V_SG]
                                  [--w2v_vector_size W2V_VECTOR_SIZE]
                                  [--w2v_window W2V_WINDOW]
                                  [--no_reverse_complement]
                                  [--sample_seq SAMPLE_SEQ]

Take fasta files, tokeniser and generate embedding. Fasta files can be .gz.
Sequences are reverse complemented by default.

options:
  -h, --help            show this help message and exit
  -i INFILE_PATH [INFILE_PATH ...], --infile_path INFILE_PATH [INFILE_PATH ...]
                        path to fasta/gz file
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        write embeddings to disk (DEFAULT: "embed/")
  -c COLUMN_NAMES, --column_names COLUMN_NAMES
                        column name for sp tokenised data (DEFAULT:
                        input_str)
  -l LABELS, --labels LABELS
                        column name for data labels (DEFAULT: labels)
  -x COLUMN_NAME, --column_name COLUMN_NAME
                        column name for extracting embeddings (DEFAULT:
                        input_str)
  -m MODEL, --model MODEL
                        load existing model (DEFAULT: None)
  -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                        load tokenised data
  -s SPECIAL_TOKENS [SPECIAL_TOKENS ...], --special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]
                        assign special tokens, eg space and pad tokens
                        (DEFAULT: ["<s>", "</s>", "<unk>", "<pad>",
                        "<mask>"])
  -n NJOBS, --njobs NJOBS
                        set number of threads to use
  --w2v_min_count W2V_MIN_COUNT
                        set minimum count for w2v (DEFAULT: 1)
  --w2v_sg W2V_SG       0 for bag-of-words, 1 for skip-gram (DEFAULT: 1)
  --w2v_vector_size W2V_VECTOR_SIZE
                        set w2v matrix dimensions (DEFAULT: 100)
  --w2v_window W2V_WINDOW
                        set context window size for w2v (DEFAULT: -/+10)
  --no_reverse_complement
                        turn off reverse complement (DEFAULT: ON)
  --sample_seq SAMPLE_SEQ
                        project sample sequence on embedding (DEFAULT: None)







Conventional k-mers

python create_embedding_bio_kmers.py -h
usage: create_embedding_bio_kmers.py [-h] [-i INFILE_PATH [INFILE_PATH ...]]
                                     [-o OUTPUT_DIR] [-m MODEL] [-k KSIZE]
                                     [-w SLIDE] [-c CHUNK] [-n NJOBS]
                                     [-s SAMPLE_SEQ] [-v VOCAB_SIZE]
                                     [--w2v_min_count W2V_MIN_COUNT]
                                     [--w2v_sg W2V_SG]
                                     [--w2v_vector_size W2V_VECTOR_SIZE]
                                     [--w2v_window W2V_WINDOW]
                                     [--no_reverse_complement]

Take tokenised data, parameters and generate embedding. Note that this takes
output of kmerise_bio.py, and NOT raw fasta files.

options:
  -h, --help            show this help message and exit
  -i INFILE_PATH [INFILE_PATH ...], --infile_path INFILE_PATH [INFILE_PATH ...]
                        path to input tokenised data file
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        write embeddings to disk (DEFAULT: "embed/")
  -m MODEL, --model MODEL
                        load existing model (DEFAULT: None)
  -k KSIZE, --ksize KSIZE
                        set size of k-mers
  -w SLIDE, --slide SLIDE
                        set length of sliding window on k-mers (min 1)
  -c CHUNK, --chunk CHUNK
                        split seqs into n-length blocks (DEFAULT: None)
  -n NJOBS, --njobs NJOBS
                        set number of threads to use
  -s SAMPLE_SEQ, --sample_seq SAMPLE_SEQ
                        set sample sequence to test model (DEFAULT: None)
  -v VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        vocabulary size for model config (DEFAULT: all)
  --w2v_min_count W2V_MIN_COUNT
                        set minimum count for w2v (DEFAULT: 1)
  --w2v_sg W2V_SG       0 for bag-of-words, 1 for skip-gram (DEFAULT: 1)
  --w2v_vector_size W2V_VECTOR_SIZE
                        set w2v matrix dimensions (DEFAULT: 100)
  --w2v_window W2V_WINDOW
                        set context window size for w2v (DEFAULT: -/+10)
  --no_reverse_complement
                        turn off reverse complement (DEFAULT: ON)










            

          

      

      

    

  

    
      
          
            
  
Perform a hyperparameter sweep

This explains the use of sweep.py for machine and deep learning through genomicBERT. If you already know what hyperparameters are needed, you can use train_model.py. For conventional machine learning, the sweep, train and cross validation steps are combined in one operation.


Source data

Source data is a HuggingFace dataset object as a csv, json or parquet file. Specify --format accordingly. csv only for non-deep learning.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:


Deep learning

python sweep.py <TRAIN_DATA> <FORMAT> <TOKENISER_PATH> --test TEST_DATA --valid VALIDATION_DATA --hyperparameter_sweep PARAMS.JSON --entity_name WANDB_ENTITY_NAME --project_name WANDB_PROJECT_NAME --group_name WANDB_GROUP_NAME --sweep_count N --metric_opt [ eval/accuracy | eval/validation | eval/loss | eval/precision | eval/recall ] --output_dir OUTPUT_DIR







Frequency-based approaches

python freq_pipeline.py -i [INFILE_PATH ... ] --format "csv" -t TOKENISER_PATH --freq_method [ cvec | tfidf ] --model [ rf | xg ] --kfolds N --sweep_count N --metric_opt [ accuracy | f1 | precision | recall | roc_auc ] --output_dir OUTPUT_DIR







Embedding

python embedding_pipeline.py -i [INFILE_PATH ... ] --format "csv" -t TOKENISER_PATH --freq_method [ cvec | tfidf ] --model [ rf | xg ] --kfolds N --sweep_count N --metric_opt [ accuracy | f1 | precision | recall | roc_auc ] --output_dir OUTPUT_DIR








Notes

The original documentation to specify training arguments is available here [https://huggingface.co/docs/transformers/v4.19.4/en/main_classes/trainer#transformers.TrainingArguments].



Usage


genomicBERT: Deep learning

Sweep parameters and search space should be passed in as a json file.


Example hyperparameter.json file{
  "name" : "random",
  "method" : "random",
  "metric": {
    "name": "eval/f1",
    "goal": "maximize"
  },
  "parameters" : {
    "epochs" : {
      "values" : [1, 2, 3]
    },
    "batch_size": {
        "values": [8, 16, 32, 64]
        },
    "learning_rate" :{
      "distribution": "log_uniform_values",
      "min": 0.0001,
      "max": 0.1
      },
    "weight_decay": {
        "values": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
      }
  },
  "early_terminate": {
      "type": "hyperband",
      "s": 2,
      "eta": 3,
      "max_iter": 27
  }
}





usage: sweep.py [-h] [-t TEST] [-v VALID] [-m MODEL]
                [--model_features MODEL_FEATURES] [-o OUTPUT_DIR] [-d DEVICE]
                [-s VOCAB_SIZE] [-w HYPERPARAMETER_SWEEP]
                [-l LABEL_NAMES [LABEL_NAMES ...]] [-n SWEEP_COUNT]
                [-e ENTITY_NAME] [-p PROJECT_NAME] [-g GROUP_NAME]
                [-c METRIC_OPT] [-r RESUME_SWEEP] [--fp16_off] [--wandb_off]
                train format tokeniser_path

Take HuggingFace dataset and perform parameter sweeping.

positional arguments:
  train                 path to [ csv | csv.gz | json | parquet ] file
  format                specify input file type [ csv | json | parquet ]
  tokeniser_path        path to tokeniser.json file to load data from

options:
  -h, --help            show this help message and exit
  -t TEST, --test TEST  path to [ csv | csv.gz | json | parquet ] file
  -v VALID, --valid VALID
                        path to [ csv | csv.gz | json | parquet ] file
  -m MODEL, --model MODEL
                        choose model [ distilbert | longformer ] distilbert
                        handles shorter sequences up to 512 tokens longformer
                        handles longer sequences up to 4096 tokens (DEFAULT:
                        distilbert)
  --model_features MODEL_FEATURES
                        number of features in data to use (DEFAULT: ALL)
                        NOTE: this is separate from the vocab_size argument.
                        under normal circumstances (eg a tokeniser generated
                        by tokenise_bio), setting this is not necessary
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        specify path for output (DEFAULT: ./sweep_out)
  -d DEVICE, --device DEVICE
                        choose device [ cpu | cuda:0 ] (DEFAULT: detect)
  -s VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        vocabulary size for model configuration
  -w HYPERPARAMETER_SWEEP, --hyperparameter_sweep HYPERPARAMETER_SWEEP
                        run a hyperparameter sweep with config from file
  -l LABEL_NAMES [LABEL_NAMES ...], --label_names LABEL_NAMES [LABEL_NAMES ...]
                        provide column with label names (DEFAULT: "").
  -n SWEEP_COUNT, --sweep_count SWEEP_COUNT
                        run n hyperparameter sweeps (DEFAULT: 64)
  -e ENTITY_NAME, --entity_name ENTITY_NAME
                        provide wandb team name (if available).
  -p PROJECT_NAME, --project_name PROJECT_NAME
                        provide wandb project name (if available).
  -g GROUP_NAME, --group_name GROUP_NAME
                        provide wandb group name (if desired).
  METRIC_OPT, --metric_opt METRIC_OPT
                        score to maximise [ eval/accuracy | eval/validation |
                        eval/loss | eval/precision | eval/recall ] (DEFAULT:
                        eval/f1)
  -r RESUME_SWEEP, --resume_sweep RESUME_SWEEP
                        provide sweep id to resume sweep.
  --fp16_off            turn fp16 off for precision / cpu (DEFAULT: ON)
  --wandb_off           run hyperparameter tuning using the wandb api and log
                        training in real time online (DEFAULT: ON)







Frequency based approach

python freq_pipeline.py -h
usage: freq_pipeline.py [-h] [--infile_path INFILE_PATH [INFILE_PATH ...]]
                        [--format FORMAT] [--embeddings EMBEDDINGS]
                        [--chunk_size CHUNK_SIZE] [-t TOKENISER_PATH]
                        [-f FREQ_METHOD] [--column_names COLUMN_NAMES]
                        [--column_name COLUMN_NAME] [-m MODEL]
                        [-e MODEL_FEATURES] [-k KFOLDS]
                        [--ngram_from NGRAM_FROM] [--ngram_to NGRAM_TO]
                        [--split_train SPLIT_TRAIN] [--split_test SPLIT_TEST]
                        [--split_val SPLIT_VAL] [-o OUTPUT_DIR]
                        [-s VOCAB_SIZE]
                        [--special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]]
                        [-w HYPERPARAMETER_SWEEP]
                        [--sweep_method SWEEP_METHOD] [-n SWEEP_COUNT]
                        [-c METRIC_OPT] [-j NJOBS] [-d PRE_DISPATCH]

Take HuggingFace dataset and perform parameter sweeping.

options:
  -h, --help            show this help message and exit
  --infile_path INFILE_PATH [INFILE_PATH ...]
                        path to [ csv | csv.gz | json | parquet ] file
  --format FORMAT       specify input file type [ csv | json | parquet ]
  --embeddings EMBEDDINGS
                        path to embeddings model file
  --chunk_size CHUNK_SIZE
                        iterate over input file for these many rows
  -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                        path to tokeniser.json file to load data from
  -f FREQ_METHOD, --freq_method FREQ_METHOD
                        choose dist [ cvec | tfidf ] (DEFAULT: tfidf)
  --column_names COLUMN_NAMES
                        column name for sp tokenised data (DEFAULT:
                        input_str)
  --column_name COLUMN_NAME
                        column name for extracting embeddings (DEFAULT:
                        input_str)
  -m MODEL, --model MODEL
                        choose model [ rf | xg ] (DEFAULT: rf)
  -e MODEL_FEATURES, --model_features MODEL_FEATURES
                        number of features in data to use (DEFAULT: ALL)
  -k KFOLDS, --kfolds KFOLDS
                        number of cross validation folds (DEFAULT: 8)
  --ngram_from NGRAM_FROM
                        ngram slice starting index (DEFAULT: 1)
  --ngram_to NGRAM_TO   ngram slice ending index (DEFAULT: 1)
  --split_train SPLIT_TRAIN
                        proportion of training data (DEFAULT: 0.90)
  --split_test SPLIT_TEST
                        proportion of testing data (DEFAULT: 0.05)
  --split_val SPLIT_VAL
                        proportion of validation data (DEFAULT: 0.05)
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        specify path for output (DEFAULT: ./results_out)
  -s VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        vocabulary size for model configuration
  --special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]
                        assign special tokens, eg space and pad tokens
                        (DEFAULT: ["<s>", "</s>", "<unk>", "<pad>",
                        "<mask>"])
  -w HYPERPARAMETER_SWEEP, --hyperparameter_sweep HYPERPARAMETER_SWEEP
                        run a hyperparameter sweep with config from file
  --sweep_method SWEEP_METHOD
                        specify sweep search strategy [ bayes | grid | random
                        ] (DEFAULT: random)
  -n SWEEP_COUNT, --sweep_count SWEEP_COUNT
                        run n hyperparameter sweeps (DEFAULT: 8)
  -c METRIC_OPT, --metric_opt METRIC_OPT
                        score to maximise [ accuracy | f1 | precision |
                        recall ] (DEFAULT: f1)
  -j NJOBS, --njobs NJOBS
                        run on n threads (DEFAULT: -1)
  -d PRE_DISPATCH, --pre_dispatch PRE_DISPATCH
                        specify dispatched jobs (DEFAULT: 0.5*n_jobs)







Embedding based approach

python embedding_pipeline.py -h
usage: embedding_pipeline.py [-h]
                             [--infile_path INFILE_PATH [INFILE_PATH ...]]
                             [--format FORMAT] [--embeddings EMBEDDINGS]
                             [--chunk_size CHUNK_SIZE] [-t TOKENISER_PATH]
                             [-f FREQ_METHOD] [--column_names COLUMN_NAMES]
                             [--column_name COLUMN_NAME] [-m MODEL]
                             [-e MODEL_FEATURES] [-k KFOLDS]
                             [--ngram_from NGRAM_FROM] [--ngram_to NGRAM_TO]
                             [--split_train SPLIT_TRAIN]
                             [--split_test SPLIT_TEST]
                             [--split_val SPLIT_VAL] [-o OUTPUT_DIR]
                             [-s VOCAB_SIZE]
                             [--special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]]
                             [-w HYPERPARAMETER_SWEEP]
                             [--sweep_method SWEEP_METHOD] [-n SWEEP_COUNT]
                             [-c METRIC_OPT] [-j NJOBS] [-d PRE_DISPATCH]

Take HuggingFace dataset and perform parameter sweeping.

options:
  -h, --help            show this help message and exit
  --infile_path INFILE_PATH [INFILE_PATH ...]
                        path to [ csv | csv.gz | json | parquet ] file
  --format FORMAT       specify input file type [ csv | json | parquet ]
  --embeddings EMBEDDINGS
                        path to embeddings model file
  --chunk_size CHUNK_SIZE
                        iterate over input file for these many rows
  -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                        path to tokeniser.json file to load data from
  -f FREQ_METHOD, --freq_method FREQ_METHOD
                        choose dist [ embed ] (DEFAULT: embed)
  --column_names COLUMN_NAMES
                        column name for sp tokenised data (DEFAULT:
                        input_str)
  --column_name COLUMN_NAME
                        column name for extracting embeddings (DEFAULT:
                        input_str)
  -m MODEL, --model MODEL
                        choose model [ rf | xg ] (DEFAULT: rf)
  -e MODEL_FEATURES, --model_features MODEL_FEATURES
                        number of features in data to use (DEFAULT: ALL)
  -k KFOLDS, --kfolds KFOLDS
                        number of cross validation folds (DEFAULT: 8)
  --ngram_from NGRAM_FROM
                        ngram slice starting index (DEFAULT: 1)
  --ngram_to NGRAM_TO   ngram slice ending index (DEFAULT: 1)
  --split_train SPLIT_TRAIN
                        proportion of training data (DEFAULT: 0.90)
  --split_test SPLIT_TEST
                        proportion of testing data (DEFAULT: 0.05)
  --split_val SPLIT_VAL
                        proportion of validation data (DEFAULT: 0.05)
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        specify path for output (DEFAULT: ./results_out)
  -s VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        vocabulary size for model configuration
  --special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]
                        assign special tokens, eg space and pad tokens
                        (DEFAULT: ["<s>", "</s>", "<unk>", "<pad>",
                        "<mask>"])
  -w HYPERPARAMETER_SWEEP, --hyperparameter_sweep HYPERPARAMETER_SWEEP
                        run a hyperparameter sweep with config from file
  --sweep_method SWEEP_METHOD
                        specify sweep search strategy [ bayes | grid | random
                        ] (DEFAULT: random)
  -n SWEEP_COUNT, --sweep_count SWEEP_COUNT
                        run n hyperparameter sweeps (DEFAULT: 8)
  -c METRIC_OPT, --metric_opt METRIC_OPT
                        score to maximise [ accuracy | f1 | precision |
                        recall ] (DEFAULT: f1)
  -j NJOBS, --njobs NJOBS
                        run on n threads (DEFAULT: -1)
  -d PRE_DISPATCH, --pre_dispatch PRE_DISPATCH
                        specify dispatched jobs (DEFAULT: 0.5*n_jobs)










            

          

      

      

    

  

    
      
          
            
  
genomicBERT: Train a deep learning classifier

This explains the use of train.py. Use this if you already know what hyperparameters are needed. Otherwise use sweep.py. For conventional machine learning, the sweep, train and cross validation steps are combined in one operation.


Source data

Source data is a HuggingFace dataset object as a csv, json or parquet file. Specify --format accordingly.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:

python train_model.py <TRAIN_DATA> <FORMAT> <TOKENISER_PATH> --test TEST_DATA --valid VALIDATION_DATA --hyperparameter_file PARAMS.JSON --entity_name WANDB_ENTITY_NAME --project_name WANDB_PROJECT_NAME --group_name WANDB_GROUP_NAME --sweep_count N --metric_opt [ eval/accuracy | eval/validation | eval/loss | eval/precision | eval/recall ] --output_dir OUTPUT_DIR --label_names labels






Note

Remember to provide the --label_names argument! This is labels by default (if this wasn’t changed in any previous part of the pipeline).



You will obtain a json file with weights for each token. Any special tokens you add will also be present. This will be used in the next step of creating a HuggingFace compatible dataset object.



Notes

The original documentation to specify training arguments is available here [https://huggingface.co/docs/transformers/v4.19.4/en/main_classes/trainer#transformers.TrainingArguments].



Usage

The full list of arguments is truncated, and only arguments added by this package are shown. These are available on the corresponding HuggingFace transformers.TrainingArguments documentation shown above.

python train.py -h

Take HuggingFace dataset and train. Arguments match that of
TrainingArguments, with the addition of [ train, test, valid, tokeniser_path,
vocab_size, model, device, entity_name, project_name, group_name,
config_from_run, metric_opt, hyperparameter_file, no_shuffle, wandb_off,
override_output_dir ]. See: https://huggingface.co/docs/transformers/v4.19.4/
en/main_classes/trainer#transformers.TrainingArguments

positional arguments:
  train                 path to [ csv | csv.gz | json | parquet ] file
  format                specify input file type [ csv | json | parquet ]
  tokeniser_path        path to tokeniser.json file to load data from

options:
  -h, --help            show this help message and exit
  --output_dir OUTPUT_DIR
                        The output directory where the model predictions and
                        checkpoints will be written. (default: None)
  --overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
                        Overwrite the content of the output directory. Use
                        this to continue training if output_dir points to a
                        checkpoint directory. (default: False)
  -t TEST, --test TEST  path to [ csv | csv.gz | json | parquet ] file
                        (default: None)
  -v VALID, --valid VALID
                        path to [ csv | csv.gz | json | parquet ] file
                        (default: None)
  -m MODEL, --model MODEL
                        choose model [ distilbert | longformer ] distilbert
                        handles shorter sequences up to 512 tokens longformer
                        handles longer sequences up to 4096 tokens (DEFAULT:
                        distilbert) (default: distilbert)
  -d DEVICE, --device DEVICE
                        choose device [ cpu | cuda:0 ] (DEFAULT: detect)
                        (default: None)
  -s VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        vocabulary size for model configuration (default:
                        32000)
  -f HYPERPARAMETER_FILE, --hyperparameter_file HYPERPARAMETER_FILE
                        provide torch.bin or json file of hyperparameters.
                        NOTE: if given, this overrides all
                        HfTrainingArguments! This is overridden by
                        --config_from_run! (default: )
  -e ENTITY_NAME, --entity_name ENTITY_NAME
                        provide wandb team name (if available). NOTE: has no
                        effect if wandb is disabled. (default: )
  -p PROJECT_NAME, --project_name PROJECT_NAME
                        provide wandb project name (if available). NOTE: has
                        no effect if wandb is disabled. (default: )
  -g GROUP_NAME, --group_name GROUP_NAME
                        provide wandb group name (if desired). (default:
                        train)
  -c CONFIG_FROM_RUN, --config_from_run CONFIG_FROM_RUN
                        load arguments from existing wandb run. NOTE: if
                        given, this overrides --hyperparameter_file!
                        (default: None)
  METRIC_OPT, --metric_opt METRIC_OPT
                        score to maximise [ eval/accuracy | eval/validation |
                        eval/loss | eval/precision | eval/recall ] (DEFAULT:
                        eval/f1) (default: eval/f1)
  --override_output_dir
                        override output directory (DEFAULT: OFF) (default:
                        False)
  --no_shuffle          turn off random shuffling (DEFAULT: SHUFFLE)
                        (default: True)
  --wandb_off           log training in real time online (DEFAULT: ON)
                        (default: True)

  [ADDITIONAL ARGUMENTS TRUNCATED]









            

          

      

      

    

  

    
      
          
            
  
Perform cross-validation

This explains the use of cross_validate.py for deep learning through the genomicBERT pipeline. For conventional machine learning, the sweep, train and cross validation steps are combined in one operation.


Source data

Source data is a HuggingFace dataset object as a csv, json or parquet file. Specify --format accordingly. csv only for non-deep learning.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:


Deep learning

Specify the same data, wandb project, entity and group names as used for sweeping or training. Once the best run is identified by the user, passing the run id into --config_from_run will automatically load config of the best run from wandb.

# use the WANDB_ENTITY_NAME, WANDB_PROJECT_NAME and the best run id corresponding to the sweep
# WANDB_GROUP_NAME should be changed to reflect the new category of runs (eg "cval")
python cross_validate.py <TRAIN_DATA> <FORMAT> --test TEST_DATA --valid VALIDATION_DATA --entity_name WANDB_ENTITY_NAME --project_name WANDB_PROJECT_NAME --group_name WANDB_GROUP_NAME --kfolds N --config_from_run WANDB_RUN_ID --output_dir OUTPUT_DIR







Frequency-based approaches

Cross-validation is carried out within the main pipeline:

python freq_pipeline.py -i [INFILE_PATH ... ] --format "csv" -t TOKENISER_PATH --freq_method [ cvec | tfidf ] --model [ rf | xg ] --kfolds N --sweep_count N --metric_opt [ accuracy | f1 | precision | recall | roc_auc ] --output_dir OUTPUT_DIR







Embedding

Cross-validation is carried out within the main pipeline:

python embedding_pipeline.py -i [INFILE_PATH ... ] --format "csv" -t TOKENISER_PATH --freq_method [ cvec | tfidf ] --model [ rf | xg ] --kfolds N --sweep_count N --metric_opt [ accuracy | f1 | precision | recall | roc_auc ] --output_dir OUTPUT_DIR








Notes

The original documentation to specify training arguments is available here [https://huggingface.co/docs/transformers/v4.19.4/en/main_classes/trainer#transformers.TrainingArguments].



Usage


Deep learning

Sweep parameters and search space should be passed in as a json file.

python ../src/cross_validate.py -h
usage: cross_validate.py [-h] [--tokeniser_path TOKENISER_PATH] [-t TEST] [-v VALID] [-m MODEL_PATH] [-o OUTPUT_DIR]
                        [-d DEVICE] [-s VOCAB_SIZE] [-f HYPERPARAMETER_FILE] [-l LABEL_NAMES [LABEL_NAMES ...]]
                        [-k KFOLDS] [-e ENTITY_NAME] [-g GROUP_NAME] [-p PROJECT_NAME] [-c CONFIG_FROM_RUN]
                        [-o METRIC_OPT] [--overwrite_output_dir] [--no_shuffle] [--wandb_off]
                        train format

Take HuggingFace dataset and perform cross validation.

positional arguments:
  train                 path to [ csv | csv.gz | json | parquet ] file
  format                specify input file type [ csv | json | parquet ]

optional arguments:
  -h, --help            show this help message and exit
  --tokeniser_path TOKENISER_PATH
                        path to tokeniser.json file to load data from
  -t TEST, --test TEST  path to [ csv | csv.gz | json | parquet ] file
  -v VALID, --valid VALID
                        path to [ csv | csv.gz | json | parquet ] file
  -m MODEL_PATH, --model_path MODEL_PATH
                        path to pretrained model dir. this should contain files such as [ pytorch_model.bin,
                        config.yaml, tokeniser.json, etc ]
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        specify path for output (DEFAULT: ./cval_out)
  -d DEVICE, --device DEVICE
                        choose device [ cpu | cuda:0 ] (DEFAULT: detect)
  -s VOCAB_SIZE, --vocab_size VOCAB_SIZE
                        vocabulary size for model configuration
  -f HYPERPARAMETER_FILE, --hyperparameter_file HYPERPARAMETER_FILE
                        provide torch.bin or json file of hyperparameters. NOTE: if given, this overrides all
                        HfTrainingArguments! This is overridden by --config_from_run!
  -l LABEL_NAMES [LABEL_NAMES ...], --label_names LABEL_NAMES [LABEL_NAMES ...]
                        provide column with label names (DEFAULT: "").
  -k KFOLDS, --kfolds KFOLDS
                        run n number of kfolds (DEFAULT: 8)
  -e ENTITY_NAME, --entity_name ENTITY_NAME
                        provide wandb team name (if available).
  -g GROUP_NAME, --group_name GROUP_NAME
                        provide wandb group name (if desired).
  -p PROJECT_NAME, --project_name PROJECT_NAME
                        provide wandb project name (if available).
  -c CONFIG_FROM_RUN, --config_from_run CONFIG_FROM_RUN
                        load arguments from existing wandb run. NOTE: if given, this overrides --hyperparameter_file!
  METRIC_OPT, --metric_opt METRIC_OPT
                        score to maximise [ eval/accuracy | eval/validation | eval/loss | eval/precision |
                        eval/recall ] (DEFAULT: eval/f1)
  --overwrite_output_dir
                        override output directory (DEFAULT: OFF)
  --no_shuffle          turn off random shuffling (DEFAULT: SHUFFLE)
  --wandb_off           run hyperparameter tuning using the wandb api and log training in real time online (DEFAULT:
                        ON)






Note

If using the --config_from_run option, note that this inherits the original output directory paths. Make sure you specify a new --output_dir and enable the --overwrite_output_dir flag. This also inherits the device specifications (gpu or cpu).








            

          

      

      

    

  

    
      
          
            
  
Compare performance of different deep learning models

This explains the use of fit_powerlaw.py. Only works on deep learning models through the genomicBERT pipeline. For more information on the method, including interpretation, please refer to the publication (https://arxiv.org/pdf/2202.02842.pdf).


Source data

Directories containing trained models from a standard huggingface or pytorch workflow can be passed in as input.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:

python fit_powerlaw.py -i [ INFILE_PATH ... ] -t OUTPUT_DIR -a N





Plots will be output to the directory. A combined plot with all performance overlaid and individual performances will be generated.



Notes

Interpreting the plots may not be straightforward. Please refer to the publication for more information (https://arxiv.org/pdf/2202.02842.pdf).



Usage

python fit_powerlaw.py -h
usage: fit_powerlaw.py [-h] [-m MODEL_PATH [MODEL_PATH ...]] [-o OUTPUT_DIR]
                       [-a ALPHA_MAX]

Take trained model dataset and apply power law fit. Acts as a performance
metric which is independent of data. For more information refer here:
https://arxiv.org/pdf/2202.02842.pdf

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL_PATH [MODEL_PATH ...], --model_path MODEL_PATH [MODEL_PATH ...]
                        path to trained model directory
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        path to output metrics directory (DEFAULT: same as
                        model_path)
  -a ALPHA_MAX, --alpha_max ALPHA_MAX
                        max alpha value to plot (DEFAULT: 8)






Note

If you are intending to download a model and the directory path matches the one on your disk, you will need to rename or remove it since it will first use local files as a priority!







            

          

      

      

    

  

    
      
          
            
  
Generate synthetic sequences for use in classification

This explains the use of generate_synthetic.py. Generates synthetic sequences given a fasta file.


Source data

Any fasta file can be used.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:

python generate_synthetic.py \
  path/to/infile.fa \
  -o path/to/outfile.fa





You will obtain a fasta file with synthetic sequences generated according to your settings. By default, dinucleotide frequency is calculated for each sequence and used to generate a corresponding null sequence. Reverse complement is possible if needed. This can be used in two-step classification in cases where you do not have a control set.



Notes

The input file can be provided in gzip format. However, output will be a plain text file as sequences are read and written line by line.



Usage

python generate_synthetic.py -h
usage: generate_synthetic.py [-h] [-b BLOCK_SIZE] [-c CONTROL_DIST] [-o OUTFILE]
                             [--do_reverse_complement]
                             infile_path

Take fasta files, generate synthetic sequences. Accepts .gz files.

positional arguments:
  infile_path           path to fasta/gz file

options:
  -h, --help            show this help message and exit
  -b BLOCK_SIZE, --block_size BLOCK_SIZE
                        size of block to generate synthetic sequences from as
                        negative control (DEFAULT: 2)
  -c CONTROL_DIST, --control_dist CONTROL_DIST
                        generate control distribution by [ bootstrap | frequency
                        | /path/to/file ] (DEFAULT: frequency)
  -o OUTFILE, --outfile OUTFILE
                        write synthetic sequences (DEFAULT: "out.fa")
  --do_reverse_complement
                        turn on reverse complement (DEFAULT: OFF)









            

          

      

      

    

  

    
      
          
            
  
Get class attribution for deep learning models

This explains the use of interpret.py for deep learning through genomicBERT.


Source data

Source data is a path to a trained pytorch classifier model directory OR a wandb run.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:


Deep learning

Input sequences can be provided as multiple strings and/or fasta files. If a string is provided, the file name will be the first 16 characters of the string followed by a unique string. If a fasta file is provided, the file name(s) will be the fasta header. Label names must be sorted in the order of labels, eg category 1, category 2.

python interpret.py <MODEL_PATH> <INPUT_SEQS ...> [TOKENISER_PATH] [OUTPUT_DIR] [LABEL_NAMES ...]








Notes

More information on transformers interpretability is available here [https://github.com/cdpierse/transformers-interpret].



Usage


genomicBERT: Deep learning

Sequences to test for class attribution can be provided directly or as fasta files.

python interpret.py -h
usage: interpret.py [-h] [-t TOKENISER_PATH] [-o OUTPUT_DIR] [-l LABEL_NAMES [LABEL_NAMES ...]]
                    model_path input_seqs [input_seqs ...]

Take complete classifier and calculate feature attributions.

positional arguments:
    model_path            path to local model directory OR wandb run
    input_seqs            input sequence(s) directly and/or fasta files

optional arguments:
    -h, --help            show this help message and exit
    -t TOKENISER_PATH, --tokeniser_path TOKENISER_PATH
                            path to tokeniser.json file to load data from
    -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                            specify path for output (DEFAULT: ./interpret_out)
    -l LABEL_NAMES [LABEL_NAMES ...], --label_names LABEL_NAMES [LABEL_NAMES ...]
                            provide label names matching order (DEFAULT: None).










            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   u
   


   
     		 	

     		
       u	

     
       	
       	
       utils	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 B
 | C
 | D
 | E
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | U
 


B


  	
      	bootstrap_seq() (in module utils)


  

  	
      	build_kmers() (in module utils)


  





C


  	
      	calculate_auc() (in module utils)


  

  	
      	chunk_text() (in module utils)


      	csv_to_hf() (in module utils)


  





D


  	
      	dataset_to_disk() (in module utils)


  





E


  	
      	embed_seqs_kmers() (in module utils)


  

  	
      	embed_seqs_sp() (in module utils)


  





G


  	
      	generate_from_freq() (in module utils)


      	get_feature_importance_mdi() (in module utils)


  

  	
      	get_feature_importance_per() (in module utils)


      	get_run_metrics() (in module utils)


      	get_tokens_from_sp() (in module utils)


  





H


  	
      	html_to_pdf() (in module utils)


  





L


  	
      	load_args_cmd() (in module utils)


  

  	
      	load_args_json() (in module utils)


  





M


  	
      	
    module

      
        	utils


      


  





P


  	
      	parse_sp_tokenised() (in module utils)


      	plot_hist() (in module utils)


  

  	
      	plot_scatter() (in module utils)


      	plot_token_dist() (in module utils)


      	process_seqs() (in module utils)


  





R


  	
      	remove_stopwords() (in module utils)


  

  	
      	reverse_complement() (in module utils)


  





S


  	
      	split_datasets() (in module utils)


  





U


  	
      	
    utils

      
        	module


      


  







            

          

      

      

    

  

    
      
          
            
  
genomeNLP: Case study of deep learning

Copyright (c) 2023 Tyrone Chen [image: ORCID logo], Navya Tyagi [image: ORCID logo], and Sonika Tyagi [image: ORCID logo].Code in this repository is provided under a MIT license [https://opensource.org/licenses/MIT].
Documentation for this specific case study is provided with © all rights reserved (temporary until publication).
All other documentation not on this page is provided under a CC-BY-3.0 AU license [https://creativecommons.org/licenses/by/3.0/au/].


Workshops and tutorials landing page


	INCOB 2023 [https://genomenlp-tutorials.readthedocs.io/en/latest/incob_2023.html]


	K-CAP 2023 [https://kcap-2023.readthedocs.io/en/latest/]






Case studies per molecule type

Please select the case study relevant to your use case:


Introduction

genomeNLP: Case study of deep learning



DNA case study

genomeNLP: Case study of DNA



RNA case study

coming soon



Protein case study

genomeNLP: Case study of Protein




Citation

Cite our manuscript here:

@article{chen2023genomicbert,
    title={genomicBERT and data-free deep-learning model evaluation},
    author={Chen, Tyrone and Tyagi, Navya and Chauhan, Sarthak and Peleg, Anton Y and Tyagi, Sonika},
    journal={bioRxiv},
    month={jun},
    pages={2023--05},
    year={2023},
    publisher={Cold Spring Harbor Laboratory},
    doi={10.1101/2023.05.31.542682},
    url={https://doi.org/10.1101/2023.05.31.542682}
}





Cite our software here:

@software{tyrone_chen_2023_8135591,
  author       = {Tyrone Chen and
                  Navya Tyagi and
                  Sarthak Chauhan and
                  Anton Y. Peleg and
                  Sonika Tyagi},
  title        = {{genomicBERT and data-free deep-learning model
                  evaluation}},
  month        = jul,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {latest},
  doi          = {10.5281/zenodo.8135590},
  url          = {https://doi.org/10.5281/zenodo.8135590}
}









            

          

      

      

    

  

    
      
          
            
  
Create a dataset object from sequences (NLP version)

This explains the use of create_dataset_nlp.py. We generate a HuggingFace dataset object given a csv file containing sequences which can be of multiple categories, a pretrained tokeniser from tokeniser.py, and column names corresponding to the title, labels and sequence of each entry in the corpus.


Source data

Any csv file can be used, and can hold more than one category of samples. Sample input data files will be available in data/. Tokeniser can be generated with tokenise.py.



Results


Note

Entry points are available if this is installed using the automated conda method. You can then use the command line argument directly, for example: create_dataset_bio. If not, you will need to use the script directly, which follows the same naming pattern, for example: python create_dataset_bio.py.



Running the code as below:

python create_dataset.py \
  /path/to/input.csv \
  /path/to/tokeniser.json \
  title \
  labels \
  content \
  -o /path/to/results/





HuggingFace dataset files will be written to disk. This can be loaded directly into a “conventional” deep learning pipeline.



Notes

It is possible to split the dataset into chunks of n-length. This is useful when the length of individual sequences become too large to fit in memory. A sequence length of 256-512 units can effectively fit on most modern GPUs. Sequence chunks are treated as independent samples of the same class and no merging of weights is performed in this implementation. Note that create_dataset_bio.py and create_dataset_nlp.py workflows are structured differently to account for the differences in conventional biological vs human language corpora, but the processes are conceptually identical.

More information on the HuggingFace 🤗 Dataset object is available online [https://huggingface.co/docs/datasets/package_reference/main_classes].



Usage

python create_dataset_nlp.py -h
usage: create_dataset_nlp.py [-h] [-d CONTROL_DIST] [-o OUTFILE_DIR]
                             [-s SPECIAL_TOKENS [SPECIAL_TOKENS ...]] [-c CHUNK]
                             [--split_train SPLIT_TRAIN] [--split_test SPLIT_TEST]
                             [--split_val SPLIT_VAL] [--no_shuffle]
                             infile_path tokeniser_path title labels content

Take control and test csv files, tokeniser and convert to HuggingFace🤗 dataset object. csv files can be
.gz.

positional arguments:
  infile_path           path to csv/gz file
  tokeniser_path        load tokeniser file
  title                 name of the column in the csv file which contains a unique identifier
  labels                name of the column in the csv file which contains labels
  content               name of the column in the csv file which contains content

optional arguments:
  -h, --help            show this help message and exit
  -d CONTROL_DIST, --control_dist CONTROL_DIST
                        supply category 2
  -o OUTFILE_DIR, --outfile_dir OUTFILE_DIR
                        write 🤗 dataset to directory as [ csv | json | parquet | dir/ ] (DEFAULT:
                        "hf_out/")
  -s SPECIAL_TOKENS [SPECIAL_TOKENS ...], --special_tokens SPECIAL_TOKENS [SPECIAL_TOKENS ...]
                        assign special tokens, eg space and pad tokens (DEFAULT: ["<s>", "</s>",
                        "<unk>", "<pad>", "<mask>"])
  -c CHUNK, --chunk CHUNK
                        split seqs into n-length blocks (DEFAULT: None)
  --split_train SPLIT_TRAIN
                        proportion of training data (DEFAULT: 0.90)
  --split_test SPLIT_TEST
                        proportion of testing data (DEFAULT: 0.05)
  --split_val SPLIT_VAL
                        proportion of validation data (DEFAULT: 0.05)
  --no_shuffle          turn off shuffle for data split (DEFAULT: ON)









            

          

      

      

    

  

    
      
          
            
  
Functions



	utils module
	bootstrap_seq()

	build_kmers()

	calculate_auc()

	chunk_text()

	csv_to_hf()

	dataset_to_disk()

	embed_seqs_kmers()

	embed_seqs_sp()

	generate_from_freq()

	get_feature_importance_mdi()

	get_feature_importance_per()

	get_run_metrics()

	get_tokens_from_sp()

	html_to_pdf()

	load_args_cmd()

	load_args_json()

	parse_sp_tokenised()

	plot_hist()

	plot_scatter()

	plot_token_dist()

	process_seqs()

	remove_stopwords()

	reverse_complement()

	split_datasets()












            

          

      

      

    

  

    
      
          
            
  
utils module


	
utils.bootstrap_seq(seq: str, block_size: int = 2)

	Take a string and reshuffle it in blocks of N length.

Shuffles a sequence in the user-defined block size. Joins the
sequence back together at the end.

Compare generate_from_freq().


	Parameters:

	
	seq (str) – A string of biological sequence data.


	block_size (int) – An integer specifying the size of block to shuffle.






	Returns:

	A reshuffled string of the same length as the original input

Input: ACGT

Output: GTAC

If the reconstructed seq exceeds seq length it will be truncated.





	Return type:

	str










	
utils.build_kmers(sequence: str, ksize: int) → str

	Generator that takes a fasta sequence and kmer size to return kmers


	Parameters:

	
	sequence (str) – an instance of a dna sequence.


	ksize (int) – size of the k-mer






	Returns:

	Individual k-mers from the input sequence. If you want to control the
sliding window size, you can slice the resulting output of this, e.g.


i for i in build_kmers(‘ACTGACTGA’, 3)]
[‘ACG’, ‘CGT’, ‘GTA’, ‘TAC’, ‘ACG’, ‘CGT’, ‘GTA’]
i for i in build_kmers(‘ACTGACTGA’, 3)][::3]
[‘ACG’, ‘GAC’, ‘GTA’]








	Return type:

	str










	
utils.calculate_auc(run, group_name=None)

	Calculate AUC for a wandb run. This assumes you logged a ROC curve.


	Parameters:

	
	eval_preds (wandb.Run) – an instance of a wandb.Run.


	group_name (str) – a label for the specified group name






	Returns:

	A pandas.DataFrame containing AUC scores per class.



	Return type:

	pandas.DataFrame










	
utils.chunk_text(infile_path: str, outfile_path: str, title: str, labels: str, content: str, chunk: int = 512)

	Take a csv-like file of text, process and stream to csv-like file.


	Parameters:

	
	infile_path (str) – A path to a file containing natural language data


	outfile_path (str) – A path to a file containing the output


	title (str) – Title of column containing titles (can be an identifier)


	labels (str) – Title of column containing labels


	content (str) – Title of column containing content


	chunk (int) – Chunk the data into seqs of n length (DEFAULT: 512)






	Returns:

	The file is written directly to disk and the sequences are not returned.

Input: /path/to/infile /path/to/outfile title labels content chunk_size

Output: None

Note that this is specific for natural language data and will not work
on biological sequences directly (which have specific formatting).
Here we assume there are the columns: index, title, content, labels.





	Return type:

	None










	
utils.csv_to_hf(infile_neg: str, infile_pos: str, outfile_path: str)

	Add hf formatting to an existing csv-like file and stream to csv-like file.
Used downstream of process_seqs().


	Parameters:

	
	infile_neg (str) – Path to file containing negative / condition 0 data


	infile_pos (str) – Path to file containing positive / condition 1 data


	outfile_path (str) – Write huggingface dataset compatible output






	Returns:

	The file is written directly to disk and the sequences are not returned.

Input: /path/to/infile_one /path/to/infile_two /path/to/output

Output: None

This is intended to be used after process_seqs(). If
used directly, it may not work as intended as some things are hardcoded.





	Return type:

	None










	
utils.dataset_to_disk(dataset: Dataset, outfile_dir: str, name: str)

	Take a 🤗 dataset object, path as output and write files to disk


	Parameters:

	
	dataset (Dataset) – A HuggingFace datasets.Dataset object


	outfile_dir (str) – Write the dataset files to this path


	name (str) – The name of the split, ie train, test,
validation. The file names will correspond to these.
Validation set is optional.






	Returns:

	Nothing is returned, this writes files directly to outfile_dir.

This is normally called by split_datasets() but can be used
directly if needed. Files are written directly to disk in multiple
formats for use in downstream operations, e.g. model training.





	Return type:

	None










	
utils.embed_seqs_kmers(infile_path: str, ksize: int = 5, slide: int = 1, rc: bool = True, chunk: int | None = None, outfile_path: str | None = None)

	Take a file of biological sequences, process and stream to generator.
Calls build_kmers() and reverse_complement().
Used to generate word2vec embeddings.


	Parameters:

	
	infile_path (str) – A path to a file containing biological sequence data


	ksize (int) – size of the k-mer (DEFAULT: 5)


	slide (int) – size of the sliding window (DEFAULT: 1)
If you want no sliding to be performed, set slide equal to ksize


	rc (bool) – reverse complement the data (DEFAULT: TRUE)


	chunk (int) – chunk the data into seqs of n length (DEFAULT: None)


	outfile_path (str) – A path to outfile (DEFAULT: None)






	Returns:

	Sequences are returned as a generator object for input into word2vec

Input: /path/to/infile

Output: list

Note that no sequence cleaning is performed, ‘N’ gets mapped to itself.
Uppercase is assumed. Does not work on RNA!





	Return type:

	list










	
utils.embed_seqs_sp(infile_path: str, outfile_path: str, chunksize: int = 1, tokeniser_path: str | None = None, special_tokens: list = ['<s>', '</s>', '<unk>', '<pad>', '<mask>'], columns: list = ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask', 'input_str'], column: str = 'input_str', labels: str | None = None)

	Take a file of SP tokenised sequences, process and stream to generator.
Used to generate word2vec embeddings. See also parse_sp_tokenised().


	Parameters:

	
	infile_path (str) – Path to csv file containing tokenised data.


	outfile_path (str) – Path to csv file containing tokenised data.


	chunksize (int) – How many rows of the dataframe to iterate at a time.


	tokeniser_path (str) – Path to sequence tokens file
(from SentencePiece)


	special_tokens (list[str]) – Special tokens to substitute for.
This should match the list of special tokens used in the original
tokeniser (which defaults to the five special tokens shown here).


	columns (list) – List of column headings (in infile_path)


	column (str) – The column header with the input_str (to extract tokens)


	labels (str) – If specified, return label column (to extract tokens)






	Returns:

	Sequences are returned as a generator object for input into word2vec

Input: /path/to/infile

Output: list





	Return type:

	list










	
utils.generate_from_freq(seq: str, block_size: int = 2, alphabet: list = ['A', 'C', 'G', 'T'], offset: float = 0.01)

	Take a string and sample from freq distribution to fill up seq length.

Compare bootstrap_seq().


	Parameters:

	
	seq (str) – A string of biological sequence data


	block_size (int) – Size of block to shuffle


	alphabet (list[str]) – Biological alphabet present in input sequences


	offset (float) – Adding offset avoids 0 division errors in small datasets






	Returns:

	Resampled sequence with matching frequency distribution of the same
length as the original input. Frequency distribution is sampled as
n-length blocks (eg: [AA, AC, ..] or [AAA, AAC, ...]).

Input: AAAACGT

Output: ACGTAAA

If the reconstructed seq exceeds seq length it will be truncated.





	Return type:

	str










	
utils.get_feature_importance_mdi(clf, features, model_type, show_features: int = 50, output_dir: str = '.') → Series

	Calculate feature importance by Gini scores. This is more effective when
there are fewer classes. See also get_feature_importance_per().


	Parameters:

	
	clf (sklearn.ensemble) – a trained sklearn tree-like model.


	features (np.ndarray) – the output of get_feature_names_out.


	model_type (str) – Random Forest “rf” or XGBoost “xg”.


	show_features (int) – number of features to plot (text export unaffected)


	output_dir (str) – figure and list of feature importances go here.






	Returns:

	pandas Series object with feature importance scores mapped to features.



	Return type:

	pd.Series










	
utils.get_feature_importance_per(clf, x_test, y_test, features, model_type, show_features: int = 50, output_dir: str = '.', n_repeats: int = 10, n_jobs: int = 1) → Series

	Calculate feature importance by permutation. This tests feature
importance in the context of the model only. See also
get_feature_importance_mdi().


	Parameters:

	
	clf (sklearn.ensemble) – a trained sklearn tree-like model.


	x_test (np.ndarray) – test data.


	y_test (np.ndarray) – test labels.


	features (np.ndarray) – the output of get_feature_names_out.


	show_features (int) – number of features to plot (text export unaffected)


	output_dir (str) – figure and list of feature importances go here.


	n_repeats (int) – number of repeats for the permutation to run.


	n_jobs (int) – number of threads for the permutation to run on.






	Returns:

	pandas Series object with feature importance scores mapped to features.



	Return type:

	pd.Series










	
utils.get_run_metrics(runs, group_name=None)

	Get metrics for the specified runs as a pandas.DataFrame

This does not directly obtain the runs, you will need to call wandb.Api
first and specify the runs you want before passing them into here.


	Parameters:

	
	runs (wandb.Api.runs) – a wandb.Api.runs() object


	group_name (str) – a label for the specified group name






	Returns:

	Writes the metrics obtained from wandb.Api.runs directly to disk.



	Return type:

	pandas.DataFrame










	
utils.get_tokens_from_sp(tokeniser_path: str, special_tokens: list = ['<s>', '</s>', '<unk>', '<pad>', '<mask>'])

	Take path to SentencePiece tokeniser + special tokens, return tokens

The input tokeniser_path is a json file generated from the
HuggingFace implementation of SentencePiece. Compare
parse_sp_tokenised().


	Parameters:

	
	tokeniser_path (str) – Path to sequence tokens file
(from SentencePiece)


	special_tokens (list[str]) – Special tokens to substitute for.
This should match the list of special tokens used in the original
tokeniser (which defaults to the five special tokens shown here).






	Returns:

	A list of cleaned tokens corresponding to variable length k-mers.



	Return type:

	list










	
utils.html_to_pdf(infile_path: str, outfile_path: str | None = None, options: dict | None = None)

	Convert the output of transformers interpret to pdf and write to disk.


	Parameters:

	
	infile_path (str) – path to transformers-interpret html output


	outfile_path (str) – path to transformers-interpret pdf output


	options (dict) – html to pdf conversion options






	Returns:

	Both pdfkit and wkhtmltopdf are required. Mainly used with interpret.
Please refer to https://github.com/JazzCore/python-pdfkit:

import pdfkit
pdfkit.from_file("input.html", "output.pdf", options={...})









	Return type:

	None










	
utils.load_args_cmd(args)

	Helper function to load a HfArgumentParser into TrainingArguments

Loads a HfArgumentParser class of arguments into a
transformers.training_args.TrainingArguments object.


	Parameters:

	args (class) – A HfArgumentParser object



	Returns:

	For more information please refer to the huggingface documentation
directly: https://huggingface.co/docs/transformers/v4.23.1/en/main_classes/trainer#transformers.TrainingArguments



	Return type:

	transformers.training_args.TrainingArguments










	
utils.load_args_json(args_json: str)

	Helper function to load a json file into TrainingArguments

Loads a json file of arguments into a
transformers.training_args.TrainingArguments object.


	Parameters:

	args_json (str) – Path to json file with training arguments



	Returns:

	For more information please refer to the huggingface documentation
directly: https://huggingface.co/docs/transformers/v4.23.1/en/main_classes/trainer#transformers.TrainingArguments



	Return type:

	transformers.training_args.TrainingArguments










	
utils.parse_sp_tokenised(infile_path: str, outfile_path: str, tokeniser_path: str | None = None, special_tokens: list = ['<s>', '</s>', '<unk>', '<pad>', '<mask>'], chunksize: int = 100, columns: list = ['idx', 'feature', 'labels', 'input_ids', 'token_type_ids', 'attention_mask', 'input_str'])

	Extract entries tokenised by SentencePiece into a pandas.DataFrame object

The input infile_path is a csv file containing tokenised data as
positional ordinal encodings. The data should have been tokenised using the
HuggingFace implementation of SentencePiece. Writes file to disk.
Compare get_tokens_from_sp(). See also embed_seqs_sp().


	Parameters:

	
	infile_path (str) – Path to csv file containing tokenised data.


	outfile_path (str) – Path to csv file containing tokenised data.


	tokeniser_path (str) – Path to sequence tokens file
(from SentencePiece)


	special_tokens (list[str]) – Special tokens to substitute for.
This should match the list of special tokens used in the original
tokeniser (which defaults to the five special tokens shown here).


	chunksize (int) – How many rows of the dataframe to iterate at a time.


	columns (list) – List of column headings






	Returns:

	The pandas.DataFrame contains the contents of the csv file, but
numeric columns are correctly formatted as numpy.array. The
remap_file argument is useful if you want to extract the k-mers
directly for use in different workflows.



	Return type:

	None










	
utils.plot_hist(compare: list, outfile_path: str | None = None)

	Plot histogram of alphas. Writes plot directly to disk. Also see
plot_scatter()


	Parameters:

	
	compare (list[pd.DataFrame]) – Paths to pandas dataframes with model info


	outfile_path (str) – Write the plot to this path






	Returns:

	Smaller alpha is better [2, 4]. Computer Vision best models are ~2.
If at least 1 layer has a score approaching 0, this indicates
scale collapse.
NLP models in the HuggingFace transformers library are
deliberately overparameterised as they are intended as a base for
fine tuning and are not a complete model. You will see values of
[2, 6] before these are fine tuned, this is expected behaviour.

If you want to compare your models against existing ones in HuggingFace
as a quick comparison, you can download a model to disk, substituting
out your model of interest as needed in the example below, then you can
pass the path to the model as an argument to compare:

from transformers import DistilBertModel
model = DistilBertModel.from_pretrained('distilbert-base-uncased')
model.save_pretrained("/path/to/distilbert")









	Return type:

	None










	
utils.plot_scatter(compare: list, outfile_path: str | None = None)

	Plot scatterplot of alphas. Writes plot directly to disk. Also see
plot_hist()


	Parameters:

	
	compare (list[pd.DataFrame]) – Paths to pandas dataframes with model info


	outfile_path (str) – Write the plot to this path






	Returns:

	Smaller alpha is better [2, 4]. Computer Vision best models are ~2.
If at least 1 layer has a score approaching 0, this indicates
scale collapse.
NLP models in the HuggingFace transformers library are
deliberately overparameterised as they are intended as a base for
fine tuning and are not a complete model. You will see values of
[2, 6] before these are fine tuned, this is expected behaviour.

If you want to compare your models against existing ones in HuggingFace
as a quick comparison, you can download a model to disk, substituting
out your model of interest as needed in the example below, then you can
pass the path to the model as an argument to compare:

from transformers import DistilBertModel
model = DistilBertModel.from_pretrained('distilbert-base-uncased')
model.save_pretrained("/path/to/distilbert")









	Return type:

	None










	
utils.plot_token_dist(tokeniser_path: str, special_tokens: list = ['<s>', '</s>', '<unk>', '<pad>', '<mask>'], outfile_dir: str = './')

	Plot distribution of token lengths. Calls get_tokens_from_sp()

The input tokeniser_path is a json file generated from the
HuggingFace implementation of SentencePiece.


	Parameters:

	
	tokeniser_path (str) – Path to sequence tokens file (from SentencePiece)


	special_tokens (list[str]) – Special tokens to substitute for


	outfile_dir (str) – Path to output plots






	Returns:

	Token histogram plots are written to outfile_dir in png and
pdf formats.



	Return type:

	matplotlib.pyplot










	
utils.process_seqs(infile_path: str, outfile_path: str, rc: bool = True, chunk: int | None = None)

	Take a file of biological sequences, process and stream to csv-like file.
Calls reverse_complement(). Used before csv_to_hf().


	Parameters:

	
	infile_path (str) – A path to a file containing biological sequence data


	outfile_path (str) – A path to a file containing the output


	rc (bool) – reverse complement the data (DEFAULT: TRUE)


	chunk (int) – chunk the data into seqs of n length (DEFAULT: None)






	Returns:

	The file is written directly to disk and the sequences are not returned.

Input: /path/to/infile

Output: None

Note that no sequence cleaning is performed, ‘N’ gets mapped to itself.
Uppercase is assumed. Does not work on RNA!





	Return type:

	None










	
utils.remove_stopwords(dataset: str, column: str | None = None, highmem: bool = True)

	Remove English language stopwords from text. Stopwords are obtained from
SpaCy 3.2.4.


	Parameters:

	
	dataset (str) – A path to a comma separated .csv file


	column (str) – The name of the column to be cleaned. If no column text is
provided (default), parses all columns. This option is disabled if
highmem is set to False!


	highmem (bool) – If True (default), uses pandas to operate on
the file. If False, parses the file line by line, overriding
column selection!






	Returns:

	New file path with removed stopwords, named dataset.CLEAN.
Note that stopwords with leading uppercase are also removed.
For example “the” and “The” will be treated the same and removed.
To obtain the stopwords list for English used in this function:

#!/bin/bash
python -m spacy download en

#!/usr/bin/python
import spacy
sp = spacy.load('en_core_web_sm')
stopwords_en = sp.Defaults.stop_words









	Return type:

	str










	
utils.reverse_complement(dna: str)

	Take a nucleic acid string as input and return reverse complement.


	Parameters:

	dna (str) – A string of nucleic acid sequence data.



	Returns:

	Reverse complemented DNA/RNA string.

Input: ACGT

Output: TGCA

Note that no sequence cleaning is performed, ‘N’ gets mapped to itself.
Uppercase is assumed. If U is detected, automatically assume RNA!
Supports letters YRKMSW. BDHV get converted to N!.





	Return type:

	str










	
utils.split_datasets(dataset: DatasetDict, outfile_dir: str, train: float, test: float = 0, val: float = 0, shuffle: bool = False)

	Split data into training | testing | validation sets


	Parameters:

	
	dataset (DatasetDict) – A HuggingFace DatasetDict object


	outfile_dir (str) – Write the dataset files to this path


	train (float) – Proportion of dataset for training


	test (float) – Proportion of dataset for testing


	val (float) – Proportion of dataset for validation


	shuffle (bool) – Shuffle the dataset before splitting






	Returns:

	Returns a datasets.DatasetDict object with corresponding
train | test | valid splits. Writes files to outfile_dir.

Specifying the validation set is optional. However, note that train +
test + validation proportions must sum to 1!
This calls dataset_to_disk() to write files to disk.
File names will match the corresponding split: train | test | valid





	Return type:

	DatasetDict












            

          

      

      

    

  _images/sweep_lr1.png
= rose-sweep-128
= lucky-sweep-125
= genilal-sweep-122

train/learning_rate
Showing first 10 runs

= valiant-sweep-127

= gentle-sweep-124
= comic-sweep-121

= solar-sweep-119

= misty-sweep-126
= misty-sweep-123
= feasible-sweep-120

train/global_step
= 9

2k 2.5k 3k





_images/sweep_pr.png
Precision v. Recall

e —

class

~— NEGATIVE
-~ POSITIVE

— bumbling-sweep-4
— eternal-sweep-1
— gallant-sweep-5
~— glad-sweep-8

— mild-sweep-3

~— proud-sweep-2
— rare-sweep-1

~ revived-sweep-6
— solar-sweep-7





_images/sweep_loss1.png
80

60

40

20

= rose-sweep-128
= lucky-sweep-12

5

= genilal-sweep-122

eval/loss
Showing first 10 runs
= valiant-sweep-127
= gentle-sweep-124
= comic-sweep-121
= solar-sweep-119

—

= misty-sweep-126
= misty-sweep-123
= feasible-sweep-120

B R ——— e e

2.5k

3k





_images/sweep_lr.png
train/learning_rate

= eternal-sweep-1 = glad-sweep-8
= solar-sweep-7 = revived-sweep-6
= gallant-sweep-5 = bumbling-sweep-4
= mild-sween-3 = proud-sweep-2 == rare-sweep-1

train/global_step
0 ¢ = = = =]

500 1k 1.5k 2k





_images/sweep_roc1.png
True positive rate

0z

0a

04 o5 o8
False positive rate

o7

08

09

10

class
NEGATIVE
POSITIVE

~ absurd-swsep-121
— absurd-swoop-14
— absurd-swoop-22
— absurd-swoop-33
 amber-sweop 120
— amber-sweop 126
— amber-sweep 2
— anciontswoep 59
— sprcot.sweep-23
"~ aprcat.sweep3
— sprcotsweep76
"~ astralsweepaD
~ astralsween a6
atomic-swoop 51





_images/train_conf_mat.png
Actual

NEGATIVE

PosITVE

Predicted
NEGATIVE PosITIVE

N
1

o 4o 80 120 160 200 240 o 4o 80 120 160 200 240






_images/sweep_pr1.png





_images/sweep_roc.png
True positive rate

o
o

o
'S

o
o

o
=)

0.0 0.2 04 0.6 0.8
False positive rate

1.0

class

~— NEGATIVE
-~ POSITIVE

— bumbling-sweep-4
— eternal-sweep-1
— gallant-sweep-5
~— glad-sweep-8

— mild-sweep-3

~— proud-sweep-2
— rare-sweep-1

~ revived-sweep-6
— solar-sweep-7





_images/train_conf_mat1.png
NEGATIVE

PosITVE

NEGATIVE

posITvE

o 80 120 180 @ 900 240

o 40 ' 80 150 160 ' 200 @ %40





_images/train_f1.png
0.79

0.785

0.78

0.775

0.77

800

1k

eval/fl
= revived-sweep-6

1.2k

train/global_step

1.4k





_images/train_lr1.png
train/learning_rate
= lucky-sweep-51

0.0001
8e-5
6e-5
4e-5

2e-5
train/global”

200 300 400 500 600





_images/ECK120009966.png
Lamd BN ONem DRt
True Predled 1 At

ety " Watmpnce
AAAGA AAATAATTAATTITA
CAGCTGTTAA ACCAAACGGT

o MOMOERpmovorn am  TACTGTOATACG
AoTAGTICGOACA

GCGGTA CAT





_images/train_pr.png
Precision v. Recall
10

class
NEGATIVE
POSITIVE

08

— rovvedswoops

06

04

02

oot

0 01 02 03 04 05 08 07 08 03 10





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to genomeNLP’s documentation!
        


        		
          genomeNLP: Genome recoding for Machine Learning Usage incorporating genomicBERT
          
            		
              Highlights
            


            		
              Cite us with:
            


            		
              Install
              
                		
                  Mamba (automated)
                


                		
                  Mamba (manual)
                


              


            


            		
              Usage
              
                		
                  0. Available commands
                


                		
                  1. Preprocessing
                


                		
                  2. Classification
                


                		
                  3. Comparing deep learning models trained by genomicBERT
                


                		
                  4. Case study
                


              


            


            		
              Background
            


            		
              Acknowledgements
            


          


        


        		
          genomeNLP: Case study of deep learning
          
            		
              Outline
              
                		
                  Learning objectives
                


                		
                  Potential/preferred prerequisite knowledge
                


                		
                  Glossary
                


              


            


            		
              1. Introduction
              
                		
                  What is NLP and genomics
                


                		
                  Why apply NLP in genomics
                


                		
                  Distinction between conventional NLP and genome NLP
                


              


            


            		
              2. Connect to a remote server
            


            		
              3. Installing conda, mamba and genomenlp
            


            		
              Case studies per molecule type
              
                		
                  DNA case study
                


                		
                  RNA case study
                


                		
                  Protein case study
                


              


            


            		
              Citation
            


          


        


        		
          genomeNLP: Case study of DNA
          
            		
              4. Setting up a biological dataset
            


            		
              5. Format a dataset for input into genomeNLP
            


            		
              6. Preparing a hyperparameter sweep
            


            		
              7. Selecting optimal hyperparameters for training
            


            		
              8. With the selected hyperparameters, train the full dataset
            


            		
              9. Perform cross-validation
            


            		
              10. Compare different models
            


            		
              11. Obtain model interpretability scores
            


            		
              Citation
            


          


        


        		
          genomeNLP: Case study of Protein
          
            		
              4. Setting up a biological dataset
            


            		
              5. Format a dataset for input into genomeNLP
            


            		
              6. Preparing a hyperparameter sweep
            


            		
              7. Selecting optimal hyperparameters for training
            


            		
              8. With the selected hyperparameters, train the full dataset
            


            		
              9. Perform cross-validation
            


            		
              10. Compare different models
            


            		
              11. Obtain model interpretability scores
            


            		
              Citation
            


          


        


        		
          Create a token set from sequences
          
            		
              Source data
            


            		
              Results
              
                		
                  Empirical tokenisation
                


                		
                  Conventional k-mers
                


              


            


            		
              Notes
            


            		
              Usage
              
                		
                  Empirical tokenisation
                


                		
                  Conventional k-mers
                


              


            


          


        


        		
          Create a dataset object from sequences
          
            		
              Source data
            


            		
              Results
            


            		
              Notes
            


            		
              Usage
            


          


        


        		
          Create embeddings from a tokenised dataset
          
            		
              Source data
            


            		
              Results
              
                		
                  Empirical tokenisation
                


                		
                  Conventional k-mers
                


              


            


            		
              Notes
            


            		
              Usage
              
                		
                  Empirical tokenisation
                


                		
                  Conventional k-mers
                


              


            


          


        


        		
          Perform a hyperparameter sweep
          
            		
              Source data
            


            		
              Results
              
                		
                  Deep learning
                


                		
                  Frequency-based approaches
                


                		
                  Embedding
                


              


            


            		
              Notes
            


            		
              Usage
              
                		
                  genomicBERT: Deep learning
                


                		
                  Frequency based approach
                


                		
                  Embedding based approach
                


              


            


          


        


        		
          genomicBERT: Train a deep learning classifier
          
            		
              Source data
            


            		
              Results
            


            		
              Notes
            


            		
              Usage
            


          


        


        		
          Perform cross-validation
          
            		
              Source data
            


            		
              Results
              
                		
                  Deep learning
                


                		
                  Frequency-based approaches
                


                		
                  Embedding
                


              


            


            		
              Notes
            


            		
              Usage
              
                		
                  Deep learning
                


              


            


          


        


        		
          Compare performance of different deep learning models
          
            		
              Source data
            


            		
              Results
            


            		
              Notes
            


            		
              Usage
            


          


        


        		
          Generate synthetic sequences for use in classification
          
            		
              Source data
            


            		
              Results
            


            		
              Notes
            


            		
              Usage
            


          


        


        		
          Get class attribution for deep learning models
          
            		
              Source data
            


            		
              Results
              
                		
                  Deep learning
                


              


            


            		
              Notes
            


            		
              Usage
              
                		
                  genomicBERT: Deep learning
                


              


            


          


        


      


    
  

_images/train_loss1.png
eval/loss
= lucky-sweep-51

0.64

0.62

0.6

rain/global_step
=

200 300 400 500 600





_images/train_lr.png
3e-5

2e-5

800

1k

train/learning_rate
= revived-sweep-6

train/global”

1.4k





_images/alpha_hist1.png
Frequency

1

2

10

- ft_prot/dsbjonsy
- fi_prot/2niwyeas

%5 20






_images/train_roc1.png
NEGATIVE
POSITIVE

10

08

— lucky-swoop-51

True positive rate

02

00/
b0 o1 02 o3 o4 o0s 05 07 o8 03 10

False positive rate.





_images/alpha_plot.png
a0

30

20

10

o 8AD_MODEL
© GOOD_MoDEL






_images/ECK120016719.png
Lamd BN ONem DRt

True
Lava

P Ao
RS tton Lo A
IO oot sy

Wordlmportance
TAGATGTCC TIGATTAA
CACCAR ANTTARACCTITT
ARAAACCAGGCATIC
Anaaacase
GAATICATCGAA RTCACE
aar





_images/train_pr1.png
Precision v. Recall

class

NEGATIVE
POSITIVE

— lucky-swoop-51

o1 o0z 03 04 05 06 07 08 03 10





_images/alpha_hist.png
- 8AD_MODEL
= GOOD_MODEL

0 40






_images/train_roc.png
True positive rate

class

NEGATIVE
POSITIVE

— rovvedswoops

%0 01 o0z 03 04 05 08 07 08 09 10
False positive rate.





_images/bio_vs_nlp.png
Challenges faced in preprocessing human
language and biological sequence data

Human Language Biological Sequence

[Rule-based]
Predefined k-mer/n-gram

[Rule-based]
Predefined words

EN: [Hello][world]
CN: [fRI[%F11tH115R]

DNA: [ATCG][CGAT]
RNA: [AUCG] [CGAU]

[Data-driven]
Learned k-mer/n-gram

[Data-driven]
Learned words

EN: [Hello][world] DNA: [AT][CG]I[CGATI
CN: [fR&F](HFR] RNA: [AUCGCG]I[A][U]






_images/alpha_plot1.png
30

2

20

15

10

o fiprotidstjonsy
o fitprot2niwyeas






_images/applications_example.png
Applications of machine learning in the
biological and clinical sciences

. Text o _ Structure

) s - o

classification prediction
y 2

e/o®

—

. Image . Gene _

recognition annotation

Genetic element A
Regulates pathway X






_images/cval_conf_mat.png
NEGATIVE

NEGATIVE

PosITIVE

o

100 200 300 400 500 600 700

o 100 200 300 400 500 600 700





_images/train_loss.png
4.84e-1

4.84e-1

4.84e-1

0.4843

4.84e-1

4.84e-1

4.84e-1

4.84e-1

800

eval/loss

= revived-sweep-6

1K

1.2k

train/global "

1.4k





_images/cval_conf_mat1.png
NEGATIVE PosITIVE

o 100 200 300 400 500 600 o 100 200 300 400 500 600

NEGATIVE






_static/plus.png





_images/cval_f1.png
eval/fl
= hearty-serenity-17 = lively-music-16 = dandy-planet-15
= feasible-voice-14 = dainty-cherry-13 = prime-dew-12
= vital-wind-11 = ancient-spaceship-10

0.84

0.835 \
8

0.825 train/

700 800 900 1k 1.1k 1.2k 1.3k





_static/file.png





_static/minus.png





_images/cval_loss1.png
eval/loss
= grateful-salad-1122 = ancient-music-1121 = polished-brook-1120
= woven-pond-1119 = comic-voice-1118 = mild-sea-1117
= deft-planet-1116 = serene-armadillo-1115

0.6

train/global_step

200 300 400 500





_images/cval_lr.png
train/learning_rate
= hearty-serenity-17 = lively-music-16
= feasible-voice-14 = dainty-cherry-13

= dandy-planet-15
= prime-dew-12

= vital-wind-11 = ancient-spaceship-10

train/global=

700 800 900 1k 1.1k 1.2k 1.3k





_images/cval_f11.png
eval/fl
= grateful-salad-1122 = ancient-music-1121 = polished-brook-1120
= woven-pond-1119 = comic-voice-1118 = mild-sea-1117
= deft-planet-1116 = serene-armadillo-1115

train/global_step

200 300 400 500





_images/cval_loss.png
train/loss
= hearty-serenity-17 = lively-music-16 = dandy-planet-15
= feasible-voice-14 = dainty-cherry-13 = prime-dew-12
= vital-wind-11 = ancient-spaceship-10
0.42

0.4

0.32 \
t -

rain/globat=—StEpy

700 800 900 1k 1.1k 1.2k 1.3k





_images/cval_pr1.png
Precision v. Recall

class

NEGATIVE
POSITIVE.

— ancientmusic-1121
— comicaica1118

~ defiplanet 1116

— gratelusaad- 1122
— mikdsoa-1117

— polishod-brook-1120
— sarene armadilo-1115
— woven pond-1119

02

oot
0 o1 0z 03 04 05 06 07 o8 09 10





_images/cval_roc.png
True positive rate

00

01

0z

o

d4 o5 o8
False positive rate.

o7

)

s

10

class

NEGATIVE
POSITIVE

~ ancientspaceship10

— daity-chorry-13

— dandy-planet1s

~ feasibi-voice-14

— heary-sareniy-17.
iely-music16.

~ primadew-12

— tabving 11





_images/cval_lr1.png
train/learning_rate

= grateful-salad-1122 = ancient-music-1121 = polished-brook-1120
= woven-pond-1119 = comic-voice-1118 = mild-sea-1117
= deft-planet-1116 = serene-armadillo-1115

0.0001

train/global>

200 300 400 500





_images/cval_pr.png
Precision v. Recall

18 class

NEGATIVE
POSITIVE

08

~ ancientspaceship10

— daity-chorry-13

— dandy-planet-15

~ feasibi-voice-14

— heary-sareniy-17.
ively-music16

— primodow-12

— vtabuing11

06 Y

04

02

oot
0 01 02 03 04 05 06 07 08 09 10





_images/data_growth.png
Stored bytes per year

Genomics is the primary
contributor to all data growth

lel9
401

35|

w
=

~N
w

N
°

-
w

104
05/

00"

® O

Genomics 93.02%

Youtube 4.651%

Twitter 0.002%
Astronomy 2.325%

Category

Category

15 Commerce, Management, Tourism and Services

High level APIs accelerate the
development of new methods

08 Information and Computing Sciences
09 Engineering

11 Medical and Health Sciences

17 Psychology and Cognitive Sciences
01 Mathematical Sciences

06 Biological Sciences

13 Education ¥

10 Technology

16 Studies in Human Society

02 Physical Sciences

03 Chemical Sciences -

20 Language, Communication and Culture -
14 Economics 4

04 Earth Sciences -

22 Philosophy and Religious Studies

21 History and Archaeology -

12 Built Environment and Design -

05 Environmental Sciences 4

07 Agricultural and Veterinary Sciences -
19 Studies in Creative Arts and Writing 4
18 Law and Legal Studies

....-r[l[f[[|[[||[

I

mmm Application

mmm High level API

0.0

0.4

0.6

0.8

1.0

le6

2013

B Application (publications)
mmm High level API (citations)

100000 200000 300000

400000

500000

600000

700000





_images/cval_roc1.png
True positive rate.

ROC

00

o1

o2

o

o4 ds o8
False positive rate

o7

08

09

10

class
NEGATIVE
POSITIVE

— andiont-music-1121

= comicvcica-1118

"~ detplanet 1116

— gratelusaad- 1122

~ midseatit7
polished brook.1120

— sarene armadilo-1115

— woven pond-1119





_images/sweep_conf_mat.png
Actual

NEGATIVE

POSITIVE

0

NEGATIVE

100 200 300

Predicted

0

POSITIVE

100 200 300

£33





_images/sweep_conf_mat1.png





_images/graphical_abstract.png
MODERN DEEP LEARNING TOOLKIT FOR BIOLOGICAL DATA

1 Problem

2 Solution

3 Features

4 Future

sin | &8y
= \\~—/’
\\& : ‘-

W@_@) (gL

High barrier for biologists

Existing high-level machine
learning interfaces are tailored
for machine learning experts
and specific data types.

There is a lack of similar user-
friendly machine learning kits
for biologists and
bioinformaticians.

aline o (}\'\
—_— C&MMCMGP\(}‘GC(

— Ml A AATATC
= ATATCATGC U\\

We introduce genomeNLP

We solve this problem by
providing a package which
is designed for biological

sequence data processing.

Our command line tool
requires only the input
sequence files and user-
defined parameters.

Highly visual and open source

Interactive visualisations
with plots & tables of
metrics and compute

resources are generated.

Files are compatible with
commonly used tools in
the event where low-level
customisation is needed.

MR

Extend to other methods

We will extend this
package continuously with
the latest state of the art
methods.

Software is open-source
and external contributions
are welcome at https://
github.com/tyronechen/
genomenlp






_images/sweep_loss.png
25

20

15

10

= eternal-sweep-1

= solar-sweep-7
= gallant-sweep-5
= mild-sween-3

train/loss

= glad-sweep-8
= revived-sweep-6
= bumbling-sweep-4
= proud-sween-2

== rare-sween-1

N train/global_step

500

1k

1.5k

2k





_images/sweep_f1.png
= eternal-sweep-1
= solar-sweep-7
= gallant-sweep-5

= mild-sween-3

°
°
0.6
0.4
e ——o
0.2
0

500

eval/fl

= proud-sween-2

1k 1.5k

= glad-sweep-8
= revived-sweep-6
= bumbling-sweep-4

== rare-sween-1

train/global_step

2k





_images/sweep_f11.png
0.6
0.5
0.4
0.3
0.2
0.1

= rose-sweep-128

= lucky-sweep-125

= genilal-sweep-122

eval/fl
Showing first 10 runs
= valiant-sweep-127
= gentle-sweep-124
= comic-sweep-121
= solar-sweep-119

= misty-sweep-126
= misty-sweep-123
= feasible-sweep-120

500

1k

1.5k

2k

train/global_step

2.5k

3k





